Slide 1

Slide 1 text

Incremental Factorization Machines for Persistently Cold-starting Online Item Recommendation Takuya Kitazawa Graduate School of Information Science and Technology, The University of Tokyo RecProfile 2016

Slide 2

Slide 2 text

Incremental Factorization Machines for (1) Persistently Cold-starting, (2) Online Item Recommendation as new baseline method Factorization Machines context-aware recommender Incremental MF online item recommender optimized by SGD

Slide 3

Slide 3 text

Continuously recommend ”new” items to ”unforeseen” users Poor recommendation accuracy ! Yahoo! Labs — online ad [M. Aharon et al. RecSys 2013] Booking.com — hotel reservation [L. Bernardi et al. CBRecSys 2015]
 Rakuten — golf package reservation [R. Swezey and Y. Chung. CIKM 2015] 3 Challenge I: Persistent cold-start in e-commerce users’ rare activity changing persona short-lived items changing prices

Slide 4

Slide 4 text

4 Promising solution: Context-aware (feature-based) recommendation Occupation Browser Age Sex [ 0, 0, 1, 0, 0, 0, 0, 1, 22, 1 ] [ 0, 1, 1, 0, 500 ] Category Price Enriched inputs

Slide 5

Slide 5 text

For 5 Factorization Machines (FMs; general predictor) for 
 context-aware recommendation global bias linear interaction [S. Rendle. ACM TIST, 3(3), 2012.] (Fig. 1) MF FMs

Slide 6

Slide 6 text

For 6 Factorization Machines (FMs; general predictor) for 
 context-aware recommendation global bias linear interaction [S. Rendle. ACM TIST, 3(3), 2012.] (Fig. 1) MF FMs Persistent cold-start can be seen as:
 concept drift online algorithms are more effective

Slide 7

Slide 7 text

7 Challenge II: Online item recommendation Incrementally update model based on user-item interactions (e.g. click, buy, book; not explicit rating)

Slide 8

Slide 8 text

8 Classical static baseline: Matrix Factorization (MF) for item recommendation https://en.wikipedia.org/wiki/Collaborative_filtering R ≈ P users QT items × 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1.0 least-squared loss for binary output

Slide 9

Slide 9 text

9 Incremental Matrix Factorization (iMF) for 
 online item recommendation iMF S can be data stream update (user ID) update (item ID) for each observation Where are auxiliary features? [J. Vinagre et al. UMAP 2014] SGD update

Slide 10

Slide 10 text

10 Overview FMs (context-aware recommender) iMF (online item recommender) Incremental FMs (iFMs) (context-aware online item recommender) optimized by SGD as generic framework (i.e. baseline) classical online baseline modern context-aware baseline

Slide 11

Slide 11 text

11 Using FMs to item recommendation Solve MF with unique target value
 [J. Vinagre et al. In Proc. of UMAP 2014, pp. 459–470.] Solve FM as regression (least-square loss) with y = 1.0 1.0 For 1.0

Slide 12

Slide 12 text

12 Generalizing iMF to incremental FMs (iFMs) SGD update for FMs O( #non-zero in x × k ) S is data stream for each observation SGD update for MF update (user information) update (item information) update update update SGD update SGD update

Slide 13

Slide 13 text

13 Incremental adaptive regularization FMs have many hyperparameters: Adaptive regularization [S. Rendle. In Proc. of WSDM 2012, pp. 133-142.] Incremental adaptive regularization (“pseudo validation sample” idea) outdated immediately

Slide 14

Slide 14 text

14 Evaluation of online item recommender: Test-then-learn procedure 0) pre-train with initial 20% of samples [J. Vinagre, et al. In Proc. of REDD 2014.] 
 Evaluation of Recommender Systems in Streaming Environments, (u1 , i1 ) ɾɾɾ timestamped n-samples for evaluation ɾɾɾ (uk , ik ) (uk+3 , ik+3 ) For sample (u, i) 1) top-N recommendation for u 2) check if i is in top-N list 3) compute recall@N in 4) update model based on (u, i) (un , in )

Slide 15

Slide 15 text

15 Experiment: MovieLens 100k (1/2) Real-world movie rating dataset ■ Binarized: { 1, 2, 3, 4, 5 } => { 0, 1 } ■ Users’ rare activity

Slide 16

Slide 16 text

16 Experiment: MovieLens 100k (2/2) MF < FMs & static < incremental

Slide 17

Slide 17 text

17 Experiment: Synthetic click (1/2) 5 ad variants w/ categories: { ad1, ad2 }, { ad3, ad4 }, { ad5 }
 ■ Rule-based generator from [M. Aharon et al., RecSys2013]
 
 
 ■ Item instability 500k impressions ▶ rule change ▶ 500k impressions

Slide 18

Slide 18 text

18 Experiment: Synthetic click (2/2) iFMs show higher adaptivity for changes

Slide 19

Slide 19 text

19 Overall results (5 times w/ different initial params.) Trade-off : efficiency vs context-awareness FMs are: slower better

Slide 20

Slide 20 text

20 Summary ■ Key features: 
 positive-only feedback
 incremental adaptive regularization ■ Use your appropriate competitor: FMs (context-aware recommender) iMF (online item recommender) Incremental FMs (iFMs) (context-aware online item recommender) ID-only Feature-based Static MF FMs Online iMF iFMs

Slide 21

Slide 21 text

21 Future work ▶ More competitors/datasets (time-stamped, rich in contexts) ▶ Other approaches for positive-only feedback (e.g. BPR) [J. Vinagre, et al. In Proc. of UMAP 2014.] (Fig. 1)

Slide 22

Slide 22 text

Incremental Factorization Machines for Persistently Cold-starting Online Item Recommendation Takuya Kitazawa Graduate School of Information Science and Technology, The University of Tokyo RecProfile 2016

Slide 23

Slide 23 text

25 500k impressions ▶ rule change ▶ 500k impressions 3 [M. Aharon et al., 
 RecSys2013] (Table 1) ⾢ most clicked ad rule

Slide 24

Slide 24 text

26 New feature insertion e.g. insert new user’s dimension