Slide 1

Slide 1 text

asserstein ٯFMԻݯ NAOMASA MATSUBAYASHI Twitter: @fadis_ WASSERSTEIN INVERTED FREQUENCY MODULATION SYNTHESIZER https://github.com/Fadis/wifm αϯϓϧίʔυ W ݱࡏςετԻ੠Λ࠶ੜ͍ͯ͠·͢ɻԻ͸ฉ͍͑ͯ͜·͔͢

Slide 2

Slide 2 text

asserstein ٯFMԻݯ NAOMASA MATSUBAYASHI Twitter: @fadis_ WASSERSTEIN INVERTED FREQUENCY MODULATION SYNTHESIZER https://github.com/Fadis/wifm αϯϓϧίʔυ W

Slide 3

Slide 3 text

FMԻݯ ੲͷPC΍ήʔϜػʹΑ͘ࡌ͍ͬͯͨ ԻָΛ૗ͰΔϋʔυ΢ΣΞ

Slide 4

Slide 4 text

άϥϯυϐΞϊ ΞϧταοΫε ϏϒϥϑΥϯ όΠΦϦϯ ϚϦϯό ຊ෺ͷָثͷԻΛϑʔϦΤม׵

Slide 5

Slide 5 text

261.63Hz 523.25Hz 784.88Hz 1046.5Hz 1308.1Hz 1569.8Hz 1831.4Hz 2093.0Hz 2354.6Hz Ի֊ʹରԠ͢Δप೾਺੒෼ άϥϯυϐΞϊ ΞϧταοΫε ϏϒϥϑΥϯ όΠΦϦϯ ϚϦϯό جԻ

Slide 6

Slide 6 text

261.63Hz 523.25Hz 784.88Hz 1046.5Hz 1308.1Hz 1569.8Hz 1831.4Hz 2093.0Hz 2354.6Hz ͦͷ੔਺ഒͷप೾਺੒෼ άϥϯυϐΞϊ ΞϧταοΫε ϏϒϥϑΥϯ όΠΦϦϯ ϚϦϯό ഒԻ

Slide 7

Slide 7 text

ͦͷ੔਺ഒͷप೾਺ͷ೾ άϥϯυϐΞϊ ߴ͍प೾਺੒෼΄Ͳ ૣ͘ݮਰ͢Δ

Slide 8

Slide 8 text

͜͏ͨ͠ৼΔ෣͍Λ ؆୯ͳܭࢉͰਅࣅΔࣄ͕Ͱ͖Ε͹ ؆୯ͳϋʔυ΢ΣΞͰ ຊ෺ͷָثͬΆ͍Ի͕ग़ͤΔ

Slide 9

Slide 9 text

f (t) = Ec (t) sin (2πωc t + Em (t) B sin (2πωm t)) ͜ͷαΠϯ೾Ͱ ͜ͷαΠϯ೾Λ࿪ΊΔ FMԻݯ

Slide 10

Slide 10 text

1ωc = ωm 2ωc = ωm 3ωc = ωm 4ωc = ωm 5ωc = ωm f (t) = Ec (t) sin (2πωc t + Em (t) B sin (2πωm t)) 6ωc = ωm ύϥϝʔλʹΑͬͯ ༷ʑͳप೾਺ʹ༷ʑͳେ͖͞ͷഒԻ͕ग़Δ

Slide 11

Slide 11 text

f (t) = Ec (t) sin (2πωc t + Em (t) B sin (2πωm t)) ͜Ε ͜Ε ͜Ε ͜Ε ͜Ε΋ ͜ΕΒͷύϥϝʔλΛௐ੔ͯ͠ ຊ෺ͷָثͱಉ͡ഒԻΛ࣋ͭԻΛग़ͤΕ͹ ͦͷָثͷԻʹฉ͑͜Δ

Slide 12

Slide 12 text

͜ΕΒͷύϥϝʔλΛௐ੔ͯ͠ ຊ෺ͷָثͱಉ͡ഒԻΛ࣋ͭԻΛग़ͤΕ͹ ͦͷָثͷԻʹฉ͑͜Δ f (t) = Ec (t) sin (2πωc t + Em (t) B sin (2πωm t)) ೉ FMԻݯ͸໓Μͩ ͜Ε ͜Ε ͜Ε ͜Ε ͜Ε΋ ͋·Γྑ͍Ի͕ग़ͳ͍ͱ͞Ε

Slide 13

Slide 13 text

αϯϓϦϯάԻΛप೾਺ղੳ ϥϯμϜͳҨ఻ࢠΛੜ੒ ֤Ҩ఻ࢠΛ'.ԻݯͰԋ૗ ֤Ҩ఻ࢠͷԻΛप೾਺ղੳ Ұ༷ަ伹ͱಥવมҟͰҨ఻ࢠΛੜ੒ αϯϓϦϯάԻͱͷڑ཭Λܭࢉ ϧʔϨοτબ୒ͰݸମΛݫબ ࠷େ෼ղೳͰ ্ҐʹมԽ͕ݟΒΕͳ͍ ͸͍ ͍͍͑ ෼ղೳΛ্͛Δ͔Ͳ͏͔Λ൑அ Ҩ఻తFMԻݯ 2016೥ https://speakerdeck.com/fadis/yi-chuan-de-fmyin-yuan Ҩ఻తΞϧΰϦζϜͰ ΑΓ༩͑ΒΕͨԻͷεϖΫτϧʹ ͍ۙԻʹͳΔύϥϝʔλΛ ੜଘͤ͞Δ ୈ12ճ ΧʔωϧʗVM୳ݕୂ

Slide 14

Slide 14 text

ຊ෺ͷϐΞϊͷԻ '.ԻݯͷϐΞϊͷԻ ͜ͷ࣮ݧͷաఔͰ FMԻݯͰ͸ग़ͤͳ͍ͱ͞Ε͍ͯͨ ϐΞϊͷԻΛͦͦ͜͜࠶ݱ͢Δύϥϝʔλ͕ݟ͔ͭͬͨ Ҩ఻తFMԻݯ 2016೥ ୈ12ճ ΧʔωϧʗVM୳ݕୂ

Slide 15

Slide 15 text

FMԻݯͰ͸ָثͷԻ৭Λ࠶ݱͰ͖ͳ͍ ਓؒͷΧϯͰ͸FMԻݯͰָثͷԻ৭Λ࠶ݱͰ͖ͳ͍

Slide 16

Slide 16 text

https://speakerdeck.com/fadis/niyurarufmyin-yuan ٯFMԻݯ 2020೥ FMԻݯͷࣜΛඍ෼ͯ͠ ޯ഑๏ͰύϥϝʔλΛൃݟ͢Δ f (t) = A ∞ ∑ n=−∞ Jn (B) cos (2πt (nωm + ωc)) Χʔωϧ7.୳ݕୂ!ؔ੢ճ໨ dJn (x) dx = 1 2 (Jn−1 (x) − Jn+1 (x))

Slide 17

Slide 17 text

࠷΋ԫ৭͘ͳΔ ͱ Λݟ͚͍ͭͨ ω B

Slide 18

Slide 18 text

Ұ൪௿͍ॴΛ୳͍ͨ͠ ࠓͷҐஔͷ܏͖Λݟͯ ΑΓ௿͍ํʹগ͠Ҡಈ͢Δ ޯ഑๏ ΋ͬͱࠨ͔ͳ ͜ͷ΁ΜʹͨͲΓண͘ ϘʔϧΛస͕ͯ͠Ұ൪௿͍ॴͰࢭ·ΔͷΛ ظ଴͢Δͷʹࣅ͍ͯΔ

Slide 19

Slide 19 text

ޯ഑๏ ͜ͷ΁ΜʹͨͲΓண͘ ͜͜ʹ͋Δຊ౰ͷ࠷খ஋ʹ͸ ͨͲΓண͚ͳ͍ ΋ͬͱࠨ͔ͳ ΋ͬͱӈ͔ͳ

Slide 20

Slide 20 text

͜ͷঢ়ଶͰ͸ޯ഑๏ͷద༻͸ແཧ

Slide 21

Slide 21 text

261.63Hz 523.25Hz 784.88Hz 1046.5Hz 1308.1Hz 1569.8Hz 1831.4Hz 2093.0Hz 2354.6Hz ഒԻ͸੔਺ഒͷप೾਺෇ۙʹग़Δ άϥϯυϐΞϊ ΞϧταοΫε ϏϒϥϑΥϯ όΠΦϦϯ ϚϦϯό ͸ৗʹ੔਺ʹͳΔ͜ͱʹ͢Δ ω = ωm ωc

Slide 22

Slide 22 text

͸ৗʹ੔਺ʹͳΔ͜ͱʹ͢Δ ω = ωm ωc

Slide 23

Slide 23 text

͜ͷࢁΛ্ʹ௒͑ΒΕΔͱࠔΔ

Slide 24

Slide 24 text

ෳ਺ͷॳظ஋͔Β୳࢝͠Ίͯ࠷খ஋ʹ౸ୡͨ͠1ͭΛબͿ ม਺ͷ਺͕૿͑Δͱࢼߦճ਺͕ٸܹʹ૿͑Δ 3ΦϖϨʔλҎ্ʹద༻͕ࠔ೉

Slide 25

Slide 25 text

ຊ෺ͷόΠΦϦϯ ٯFMԻݯόΠΦϦϯ ࣮ࡍόΠΦϦϯͷԻʹฉ͑͜ͳ͍ σνϡʔϯ໰୊ ͜ͷ΁Μ͕ͬͦ͝Γফ͍͑ͯΔ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠

Slide 26

Slide 26 text

ຊ෺ͷόΠΦϦϯ ٯFMԻݯόΠΦϦϯ ੔਺ഒͷप೾਺͔Βগͣ͠Εͨप೾਺ͰഒԻ͕ग़͍ͯΔ (ഒԻͷप೾਺ͷഒ཰)͸ৗʹ੔਺ʹͳΔ͜ͱʹ͢Δ ω = ωm ωc ͱ͍͏੍໿Λ՝ͨ͠ͷͰͣΕͨഒԻ͕શͯແࢹ͞Ε͍ͯΔ

Slide 27

Slide 27 text

ޡࠩͷ෼෍͕Α͘ͳ͍ খࡉ޻Ͱ෼෍Λྑ͘͢Δͱ ָثͷಛ௃ΛऔΓଛͶΔ ͦ΋ͦ΋ଛࣦؔ਺͕ྑ͘ͳ͍ͷͰ͸? ͔͜͜Β͕ࠓճͷ৽ωλ

Slide 28

Slide 28 text

ฏۉೋ৐ޡࠩ L = 1 n n ∑ i=0 (ei − gi) 2 ຊ෺ͷप೾਺੒෼ ੜ੒෺ͷप೾਺੒෼ શͯͷप೾਺੒෼ʹ͍ͭͯͷޡࠩΛ଍ͯ͠ฏۉΛऔΔ ຊ෺ͱੜ੒෺ͷ͕ࠩ ਖ਼Ͱ΋ෛͰ΋ޡࠩ͸ਖ਼ʹͳΔ ͱ ͕ࣅ͍ͯΔఔ ͸খ͘͞ͳΔ e g L ٯFMԻݯͷଛࣦؔ਺

Slide 29

Slide 29 text

ฏۉೋ৐ޡࠩ ຊ෺ ੜ੒෺ ຊ෺Ͱ͸ग़͍ͯͳ͍प೾਺ͷ੒෼͕ग़͍ͯΔ ຊ෺Ͱ͸ग़͍ͯΔप೾਺ͷ੒෼͕ग़͍ͯͳ͍ ͜͜Ͱग़͍ͯΔ෼ؙ͕͝ͱޡࠩ ͜͜Ͱग़͍ͯͳ͍෼ؙ͕͝ͱޡࠩ ޡࠩ=A + B = A = B

Slide 30

Slide 30 text

ฏۉೋ৐ޡࠩ ຊ෺ ੜ੒෺ ຊ෺Ͱ͸ग़͍ͯΔप೾਺ͷ੒෼͕ग़͍ͯͳ͍ ͜͜Ͱग़͍ͯͳ͍෼ؙ͕͝ͱޡࠩ ؒҧͬͨप೾਺ͰԻ͕ग़͍ͯΔΑΓ Ի͕ग़͍ͯͳ͍ํ͕·ͩϚγ ޡࠩ=B = B

Slide 31

Slide 31 text

໼ҹͷํ޲ʹҠಈ͢Δ΄Ͳߴप೾੒෼͕ՄௌҬ֎ʹग़Δ = Ի͕ग़͍ͯͳ͍ͷͰϚγঢ়ଶ ࢁͷݪҼ

Slide 32

Slide 32 text

ฏۉೋ৐ޡࠩ ຊ෺ ੜ੒෺ ޡࠩ=શ෦ ͳ͠ ͕มΘΔͱഒԻͷप೾਺͸Ҡಈ͢Δ͕ ฏۉೋ৐ޡࠩͰ͸ຊ෺ͱҰக͢ΔҰॠΛআ͍ͯ ౳͘͠ग़͍ͯͳ͍ํ͕Ϛγ ω

Slide 33

Slide 33 text

͜ͷ݁Ռ ํ޲͸ຊ෺ͱप೾਺͕Ұக͢Δ͔ᷮͳॠ͚ؒͩԫ৭͘ͳΔ ω

Slide 34

Slide 34 text

L = 1 n n ∑ i=0 (ei − gi) 2 ฏۉೋ৐ޡ͕ࠩԻ৭ಉ࢜ͷڑ཭ΛଌΔखஈͱͯ͠ద͍ͯ͠ͳ͍ࣄ͸໌Β͔

Slide 35

Slide 35 text

Wassersteinڑ཭

Slide 36

Slide 36 text

Wassersteinڑ཭ W (ℙ, ℚ) = inf J∈𝒥(ℙ, ℚ) ∫ ∥x − y∥dJ (x, y) ຊ෺ͷ෼෍ ੜ੒෺ͷ෼෍ ͷ͋Δαϯϓϧ͔Β ͷ͋Δαϯϓϧ΁ͷڑ཭ ℙ ℚ ࠷΋ޮ཰ͷྑ͍༌ૹํ๏Λ༻͍ͨ৔߹ͷ 2ͭͷ෼෍ͷྨࣅ౓ΛଌΔڑ཭ ͷ͋Δαϯϓϧ͔Β ͷ͋Δαϯϓϧ΁ͷ༌ૹྔ ℙ ℚ ༌ૹྔ ڑ཭ͷ૯࿨ ×

Slide 37

Slide 37 text

Wassersteinڑ཭ 0 0.25 0.5 0.75 1 0 1 2 3 4 5 0 0.25 0.5 0.75 1 0 1 2 3 4 5 ℙ ℚ W (ℙ, ℚ) = × 1+ × 1+ × 2 ͷঢ়ଶ͔Β ͷঢ়ଶʹ͢Δҝʹ ӡ͹ͳ͚Ε͹ͳΒͳ͍෺ ӡͿڑ཭ ͷ૯࿨ ℙ ℚ × ͜ͷ஋͕খ͍͞ఔ2ͭͷ෼෍͸ࣅ͍ͯΔͱݴ͑Δ

Slide 38

Slide 38 text

਺ֶతʹͪΌΜͱͨ͠આ໌΍ޮ཰ͷྑ͍ٻΊํ http://www.stat.cmu.edu/~larry/=sml/ 36-708 Statistical Methods for Machine Learning (CMUͷߨٛ)ͷࢿྉ ͱ͔ https://arxiv.org/abs/1701.07875 Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. PMLR, 2017. Wasserstein GAN Wassersteinڑ཭Λ࢖ͬͯϞʔυ่յΛ๷͙GANʹ͍ͭͯͷ࿦จ Optimal Transport and Wasserstein Distance ͋ͨΓݟͯ

Slide 39

Slide 39 text

Wassersteinڑ཭ͷੌ͍ॴ ຊ෺ ੜ੒෺ ฏۉೋ৐ޡࠩϚϯ ੜ੒෺͸Կ΋͔΋ؒҧ͍ͬͯΔ ੜ੒෺ͷ ͸ཁΒͳ͍ॴʹੜ͍͑ͯΔͷͰແ͍ํ͕ྑ͍ WassersteinϚϯ ੯͍͠ ੜ੒෺ͷ ͸͋ͱ΋͏গ͠ࠨʹ͋ͬͨΒ׬ᘳͩͬͨͷʹ ΄Μͷগ͠ͷࠩ

Slide 40

Slide 40 text

ਓ͕ؒݟͯ΋࠷దͳ ͱ ͷҐஔ͕ݟ͑ΔϨϕϧ B ω

Slide 41

Slide 41 text

ϑʔϦΤม׵ Wassersteinڑ཭ؔ਺ Τϯϕϩʔϓਪఆ ຊ෺ͷָثͷԻ ∑ ਖ਼نԽ ຊ෺ͷԻͱੜ੒ͨ͠Իͷڑ཭L ԻྔA प೾਺ྖҬFMԻݯ มௐͷڧ͞B 2ͭͷαΠϯ೾ͷप೾਺ൺω ·ͣద౰ͳ ͱ Ͱ ΛٻΊͯ B ω L

Slide 42

Slide 42 text

ϑʔϦΤม׵ प೾਺ྖҬFMԻݯͷඍ෼ Wassersteinڑ཭ؔ਺ͷඍ෼ Τϯϕϩʔϓਪఆ ຊ෺ͷָثͷԻ ∑ ਖ਼نԽ มௐͷڧ͞B 2ͭͷαΠϯ೾ͷप೾਺ൺω ຊ෺ͷԻͱੜ੒ͨ͠Իͷڑ཭L ԻྔA Adam ޡࠩٯ఻೻Ͱ ͔Β ͱ ΛͲ͏मਖ਼͢΂͖͔ΛٻΊΔ L B ω

Slide 43

Slide 43 text

ϑʔϦΤม׵ प೾਺ྖҬFMԻݯͷඍ෼ Wassersteinڑ཭ؔ਺ͷඍ෼ Τϯϕϩʔϓਪఆ ຊ෺ͷָثͷԻ ∑ ਖ਼نԽ มௐͷڧ͞B 2ͭͷαΠϯ೾ͷप೾਺ൺω ຊ෺ͷԻͱੜ੒ͨ͠Իͷڑ཭L ԻྔA Adam ޡࠩٯ఻೻Ͱ ͔Β ͱ ΛͲ͏मਖ਼͢΂͖͔ΛٻΊΔ L B ω Wassersteinڑ཭ؔ਺͸ ղੳతʹඍ෼Ͱ͖ͳ͍

Slide 44

Slide 44 text

std::tuple< std::vector< T >, std::vector< T > > backward( const std::vector &A, const std::vector &AWeights, const std::vector &B, const std::vector &BWeights, T dist, T delta, T wdelta ) { std::vector dAWeights( AWeights.size() ); std::vector dA( A.size() ); #pragma omp parallel for for( size_t i = 0; i < A.size(); ++i ) { auto modif_ = A; modif_[ i ] += delta; auto modified_dist = forward_x( modif_, AWeights, B, BWeights ); dA[ i ] = ( modified_dist - dist ) / delta; } #pragma omp parallel for for( size_t i = 0; i < AWeights.size(); ++i ) { auto modif_ = AWeights; modif_[ i ] += wdelta; auto modified_dist = forward_x( A, modif_, B, BWeights ); dAWeights[ i ] = ( modified_dist - dist ) / wdelta; } return std::make_tuple( dA, dAWeights ); } ղੳతʹඍ෼Ͱ͖ͳ͍ͳΒ ਺஋తʹඍ෼͢Ε͹ྑ͍

Slide 45

Slide 45 text

ɺ Ͱ࢝ΊΔ ෳ਺ͷॳظ஋͔Βࢼ͢ඞཁ͸ͳ͍ B = 5 ω = 5

Slide 46

Slide 46 text

݁Ռ

Slide 47

Slide 47 text

ຊ෺ͷόΠΦϦϯ ٯFMԻݯόΠΦϦϯ ͜ͷ΁Μ͕ͬͦ͝Γফ͍͑ͯΔ ࣮ࡍόΠΦϦϯͷԻʹฉ͑͜ͳ͍ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠

Slide 48

Slide 48 text

ຊ෺ͷόΠΦϦϯ Wasserstein ٯFMԻݯόΠΦϦϯ όΠΦϦϯͷԻʹฉ͑͜Δ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠

Slide 49

Slide 49 text

ຊ෺ͷϐΞϊ ਓ͕ؒ࡞ͬͨFMԻݯϐΞϊ 80೥୅ʙ90೥୅ͷPCήʔϜͱ͔ͰΑ͘໐ͬͯͨ΍ͭ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠

Slide 50

Slide 50 text

ຊ෺ͷϐΞϊ ٯFMԻݯͰ࡞ͬͨFMԻݯϐΞϊ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠

Slide 51

Slide 51 text

ຊ෺ͷϐΞϊ WassersteinٯFMԻݯͰ ࡞ͬͨFMԻݯϐΞϊ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠

Slide 52

Slide 52 text

՝୊

Slide 53

Slide 53 text

$ time wav2fm2 -i Piano.ff.C4.aiff -d 1 -n 60 -t 40 ... real 4m43.748s user 17m5.382s sys 0m3.239s $ time wav2fm -i Piano.ff.C4.aiff -d 1 -n 60 ... real 3m27.189s user 3m29.071s sys 0m0.036s ٯFMԻݯͰϐΞϊͷύϥϝʔλΛ୳͢ WassersteinٯFMԻݯͰϐΞϊͷύϥϝʔλΛ୳͢ ΍͸Γ਺஋ඍ෼͸஗͍ Intel Core i5-6500 (Gentoo Linux)Λ࢖༻

Slide 54

Slide 54 text

Sinkhorn Distances: Lightspeed Computation of Optimal Transport Cuturi, Marco. "Sinkhorn distances: lightspeed computation of optimal transport." NIPS. Vol. 2. No. 3. 2013. https://papers.nips.cc/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d- Abstract.html Wassersteinڑ཭ͷۙࣅ Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance Luise, Giulia, et al. "Differential properties of sinkhorn approximation for learning with wasserstein distance." arXiv preprint arXiv:1805.11897 (2018). Wassersteinڑ཭ͷۙࣅͷඍ෼ https://arxiv.org/abs/1805.11897 ্ख͘΍Ε͹͜ͷ΁Μ͕࢖͑Δ͔΋

Slide 55

Slide 55 text

Λ੔਺ʹἧ͑Δ΂ָ͖ثͱἧ͑ͯ͸͍͚ͳָ͍ث͕͋Δ ω WassersteinٯFMԻݯͰ͸ Λ੔਺ʹറΖ͏ͱ͢Δޯ഑͸ੜ͡ͳ͍ͷͰ ͸ඇ੔਺ͷ஋͕ग़΍͍͢ ω ω

Slide 56

Slide 56 text

Λ੔਺ʹἧ͑Δ΂ָ͖ثͱἧ͑ͯ͸͍͚ͳָ͍ث͕͋Δ ω WassersteinٯFMԻݯͰ͸ Λ੔਺ʹറΖ͏ͱ͢Δޯ഑͸ੜ͡ͳ͍ͷͰ ͸ඇ੔਺ͷ஋͕ग़΍͍͢ ω ω όΠΦϦϯͷΑ͏ʹഒԻ͕੔਺ഒʹͳ͍ͬͯͳ͍ࣄ͕ ຊ෺Β͠͞Λग़ָ͢ث΋͋Ε͹ τϥϯϖοτͷΑ͏ʹഒԻ͕੔਺ഒʹͳ͍ͬͯͳ͍ͱ ຊ෺Β͕͠͞ग़ͳָ͍ث΋͋Δ

Slide 57

Slide 57 text

ຊ෺ͷτϥϯϖοτ WassersteinٯFMԻݯͰ ࡞ͬͨFMԻݯτϥϯϖοτ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠ Λ੔਺஋ʹݻఆ͠ͳ͍ ω

Slide 58

Slide 58 text

ຊ෺ͷτϥϯϖοτ WassersteinٯFMԻݯͰ ࡞ͬͨFMԻݯτϥϯϖοτ 2ΦϖϨʔλ ϑΟʔυόοΫͳ͠ Λ1ʹݻఆ͢Δ ω

Slide 59

Slide 59 text

Λಛఆͷ஋ʹݻఆͨ͠ํ͕ྑ͍݁Ռ͕ಘΒΕΔ͔ ݻఆ͠ͳ͍ํ͕ྑ͍݁Ռ͕ಘΒΕΔ͔Λ ࣗಈͰ൑அ͢Δखஈ͸ࠓͷͱ͜Ζແ͍ ω

Slide 60

Slide 60 text

·ͱΊ FMԻݯͰຊ෺ͷָثΒ͍͠ԻΛग़͢ύϥϝʔλΛ ޯ഑๏ Ͱ୳͢ͱ͖͸ Wassersteinڑ཭ Λ࢖͏ͱྑ͍