Slide 1

Slide 1 text

RCO論文輪読会(2016/07/29) “Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling”(ICML 2016) Christopher De Sa, Kunle Olukotun, Christopher Ré ICTソリューション局アドテクノロジーサービス開発部 高柳慎一

Slide 2

Slide 2 text

(C)Recruit Communications Co., Ltd. Abstract 1

Slide 3

Slide 3 text

(C)Recruit Communications Co., Ltd. 1. Introduction 2

Slide 4

Slide 4 text

(C)Recruit Communications Co., Ltd. Gibbs samplingとは 3

Slide 5

Slide 5 text

(C)Recruit Communications Co., Ltd. ビッグデータ時代におけるGibbs samplingの弱点 4

Slide 6

Slide 6 text

(C)Recruit Communications Co., Ltd. 今回の中心となるアルゴリズム:HOGWILD! 5

Slide 7

Slide 7 text

(C)Recruit Communications Co., Ltd. この論文でやること 6

Slide 8

Slide 8 text

(C)Recruit Communications Co., Ltd. Total influence α 7

Slide 9

Slide 9 text

(C)Recruit Communications Co., Ltd. ここから先やること(詳細後述) 8

Slide 10

Slide 10 text

(C)Recruit Communications Co., Ltd. 2. Related Work 9

Slide 11

Slide 11 text

(C)Recruit Communications Co., Ltd. HOGWILD!-Gibbs sampling アルゴリズム 10

Slide 12

Slide 12 text

(C)Recruit Communications Co., Ltd. HOGWILD!-Gibbs sampling アルゴリズム 11

Slide 13

Slide 13 text

(C)Recruit Communications Co., Ltd. 3. Modeling Asynchronicity 12

Slide 14

Slide 14 text

(C)Recruit Communications Co., Ltd. 条件 13

Slide 15

Slide 15 text

(C)Recruit Communications Co., Ltd. 条件 14

Slide 16

Slide 16 text

(C)Recruit Communications Co., Ltd. 4. The First Challenge: Bias 15

Slide 17

Slide 17 text

(C)Recruit Communications Co., Ltd. Total Variance Distance(以下、TVと呼称) 16

Slide 18

Slide 18 text

(C)Recruit Communications Co., Ltd. Gibbs samplingの場合 17

Slide 19

Slide 19 text

(C)Recruit Communications Co., Ltd. 4.1. Bias Example 18

Slide 20

Slide 20 text

(C)Recruit Communications Co., Ltd. 4.1. Bias Example 19

Slide 21

Slide 21 text

(C)Recruit Communications Co., Ltd. 4.1. Bias Example 20

Slide 22

Slide 22 text

(C)Recruit Communications Co., Ltd. 4.2. Bounding the Bias 21

Slide 23

Slide 23 text

(C)Recruit Communications Co., Ltd. Sparse Variation Distance(以下、SVと呼称) 22

Slide 24

Slide 24 text

(C)Recruit Communications Co., Ltd. Sparse Variation Distance 23

Slide 25

Slide 25 text

(C)Recruit Communications Co., Ltd. Sparse Estimation Time 24

Slide 26

Slide 26 text

(C)Recruit Communications Co., Ltd. Total Influence 25

Slide 27

Slide 27 text

(C)Recruit Communications Co., Ltd. Claim1 (詳細な証明はArxivの論文見ないとダメ) 26

Slide 28

Slide 28 text

(C)Recruit Communications Co., Ltd. Claim1を証明するための定理 27

Slide 29

Slide 29 text

(C)Recruit Communications Co., Ltd. 定理1 28

Slide 30

Slide 30 text

(C)Recruit Communications Co., Ltd. 定理2 29

Slide 31

Slide 31 text

(C)Recruit Communications Co., Ltd. 5. The Second Challenge: Mixing Times 30

Slide 32

Slide 32 text

(C)Recruit Communications Co., Ltd. 5.1. Mixing Time Example 31

Slide 33

Slide 33 text

(C)Recruit Communications Co., Ltd. 5.1. Mixing Time Example 32

Slide 34

Slide 34 text

(C)Recruit Communications Co., Ltd. 5.2. Bounding the Mixing Time 33 ※前述の例は Dobrushin’s条 件を満たしてい ない例なのでこ この定理とは無 矛盾

Slide 35

Slide 35 text

(C)Recruit Communications Co., Ltd. 5.2. Bounding the Mixing Time 34

Slide 36

Slide 36 text

(C)Recruit Communications Co., Ltd. 5.3. A Positive Example: Ising Model 35

Slide 37

Slide 37 text

(C)Recruit Communications Co., Ltd. 5.4. Proof Outline 36

Slide 38

Slide 38 text

(C)Recruit Communications Co., Ltd. 6. Experiments 37

Slide 39

Slide 39 text

(C)Recruit Communications Co., Ltd. 6. Experiments 38

Slide 40

Slide 40 text

(C)Recruit Communications Co., Ltd. 7. Conclusion 39