Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
RCO論文輪読会(2016/07/29) “Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling”(ICML 2016) Christopher De Sa, Kunle Olukotun, Christopher Ré ICTソリューション局アドテクノロジーサービス開発部 高柳慎一
Slide 2
Slide 2 text
(C)Recruit Communications Co., Ltd. Abstract 1
Slide 3
Slide 3 text
(C)Recruit Communications Co., Ltd. 1. Introduction 2
Slide 4
Slide 4 text
(C)Recruit Communications Co., Ltd. Gibbs samplingとは 3
Slide 5
Slide 5 text
(C)Recruit Communications Co., Ltd. ビッグデータ時代におけるGibbs samplingの弱点 4
Slide 6
Slide 6 text
(C)Recruit Communications Co., Ltd. 今回の中心となるアルゴリズム:HOGWILD! 5
Slide 7
Slide 7 text
(C)Recruit Communications Co., Ltd. この論文でやること 6
Slide 8
Slide 8 text
(C)Recruit Communications Co., Ltd. Total influence α 7
Slide 9
Slide 9 text
(C)Recruit Communications Co., Ltd. ここから先やること(詳細後述) 8
Slide 10
Slide 10 text
(C)Recruit Communications Co., Ltd. 2. Related Work 9
Slide 11
Slide 11 text
(C)Recruit Communications Co., Ltd. HOGWILD!-Gibbs sampling アルゴリズム 10
Slide 12
Slide 12 text
(C)Recruit Communications Co., Ltd. HOGWILD!-Gibbs sampling アルゴリズム 11
Slide 13
Slide 13 text
(C)Recruit Communications Co., Ltd. 3. Modeling Asynchronicity 12
Slide 14
Slide 14 text
(C)Recruit Communications Co., Ltd. 条件 13
Slide 15
Slide 15 text
(C)Recruit Communications Co., Ltd. 条件 14
Slide 16
Slide 16 text
(C)Recruit Communications Co., Ltd. 4. The First Challenge: Bias 15
Slide 17
Slide 17 text
(C)Recruit Communications Co., Ltd. Total Variance Distance(以下、TVと呼称) 16
Slide 18
Slide 18 text
(C)Recruit Communications Co., Ltd. Gibbs samplingの場合 17
Slide 19
Slide 19 text
(C)Recruit Communications Co., Ltd. 4.1. Bias Example 18
Slide 20
Slide 20 text
(C)Recruit Communications Co., Ltd. 4.1. Bias Example 19
Slide 21
Slide 21 text
(C)Recruit Communications Co., Ltd. 4.1. Bias Example 20
Slide 22
Slide 22 text
(C)Recruit Communications Co., Ltd. 4.2. Bounding the Bias 21
Slide 23
Slide 23 text
(C)Recruit Communications Co., Ltd. Sparse Variation Distance(以下、SVと呼称) 22
Slide 24
Slide 24 text
(C)Recruit Communications Co., Ltd. Sparse Variation Distance 23
Slide 25
Slide 25 text
(C)Recruit Communications Co., Ltd. Sparse Estimation Time 24
Slide 26
Slide 26 text
(C)Recruit Communications Co., Ltd. Total Influence 25
Slide 27
Slide 27 text
(C)Recruit Communications Co., Ltd. Claim1 (詳細な証明はArxivの論文見ないとダメ) 26
Slide 28
Slide 28 text
(C)Recruit Communications Co., Ltd. Claim1を証明するための定理 27
Slide 29
Slide 29 text
(C)Recruit Communications Co., Ltd. 定理1 28
Slide 30
Slide 30 text
(C)Recruit Communications Co., Ltd. 定理2 29
Slide 31
Slide 31 text
(C)Recruit Communications Co., Ltd. 5. The Second Challenge: Mixing Times 30
Slide 32
Slide 32 text
(C)Recruit Communications Co., Ltd. 5.1. Mixing Time Example 31
Slide 33
Slide 33 text
(C)Recruit Communications Co., Ltd. 5.1. Mixing Time Example 32
Slide 34
Slide 34 text
(C)Recruit Communications Co., Ltd. 5.2. Bounding the Mixing Time 33 ※前述の例は Dobrushin’s条 件を満たしてい ない例なのでこ この定理とは無 矛盾
Slide 35
Slide 35 text
(C)Recruit Communications Co., Ltd. 5.2. Bounding the Mixing Time 34
Slide 36
Slide 36 text
(C)Recruit Communications Co., Ltd. 5.3. A Positive Example: Ising Model 35
Slide 37
Slide 37 text
(C)Recruit Communications Co., Ltd. 5.4. Proof Outline 36
Slide 38
Slide 38 text
(C)Recruit Communications Co., Ltd. 6. Experiments 37
Slide 39
Slide 39 text
(C)Recruit Communications Co., Ltd. 6. Experiments 38
Slide 40
Slide 40 text
(C)Recruit Communications Co., Ltd. 7. Conclusion 39