Slide 1

Slide 1 text

scmap – projection of single-cell RNA-seq data across datasets Vlad(imir) Kiselev (postdoc @ Martin Hemberg team) Head of Cellular Genetics Informatics team

Slide 2

Slide 2 text

Single-cell RNA-seq The introductory slides were kindly provided by Mike Stubbington (from his Human Cell Atlas presentation)

Slide 3

Slide 3 text

The Art of Clean Up, Ursus Wehrli

Slide 4

Slide 4 text

The Art of Clean Up, Ursus Wehrli

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

Moore’s law in single-cell RNA-seq experiments Svensson et al., Nature Protocols, April 2018

Slide 7

Slide 7 text

Single-cell RNA-seq atlases October 2016 400,000 single cells All major mouse organs Han et al, Cell, February 2018 Human Cell Atlas Mouse Cell Atlas Fly Cell Atlas All cells in a fly (~25 million) December 2017

Slide 8

Slide 8 text

Typical analysis Macosko et al, Nature Biotechnology, 2016

Slide 9

Slide 9 text

Can we make use of all these data in an integrative manner?

Slide 10

Slide 10 text

Yes! A method for projecting cells from a single-cell RNA-seq dataset onto cell-types or individual cells from other experiments. www.bioconductor.org www.bioconductor.org scmap

Slide 11

Slide 11 text

The Power of bioRxiv

Slide 12

Slide 12 text

The Power of bioRxiv

Slide 13

Slide 13 text

How does it work? Query Reference scmap-cluster scmap-cell a Method scmap−cluster scmap−cell SVM RF b Method scmap−cluster scmap−cell SVM RF c Cell type A Cell type B Cell type C Unknown cell type This cell will be assigned to the cell-type A

Slide 14

Slide 14 text

How does it work? Query Reference scmap-cluster scmap-cell a Method scmap−cluster scmap−cell SVM RF b Method scmap−cluster scmap−cell SVM RF c Cell type A Cell type B Cell type C Unknown cell type This cell will be assigned to the cell-type B

Slide 15

Slide 15 text

How does it work? Query Reference scmap-cluster scmap-cell a Method scmap−cluster scmap−cell SVM RF b Method scmap−cluster scmap−cell SVM RF c Cell type A Cell type B Cell type C Unknown cell type This cell will be assigned to the cell-type C

Slide 16

Slide 16 text

How does it work? Query Reference scmap-cluster scmap-cell a Method scmap−cluster scmap−cell SVM RF b Method scmap−cluster scmap−cell SVM RF c Cell type A Cell type B Cell type C Unknown cell type This cell will be assigned to the cell from the cell type A

Slide 17

Slide 17 text

How does it work? Query Reference scmap-cluster scmap-cell a Method scmap−cluster scmap−cell SVM RF b Method scmap−cluster scmap−cell SVM RF c Cell type A Cell type B Cell type C Unknown cell type This cell will be assigned to the cell from the cell type C

Slide 18

Slide 18 text

How does it work? Query Reference scmap-cluster scmap-cell a Method scmap−cluster scmap−cell SVM RF b Method scmap−cluster scmap−cell SVM RF c Cell type A Cell type B Cell type C Unknown cell type This cell will be unassigned

Slide 19

Slide 19 text

Discovery vs validation Query Reference scmap-cluster scmap-cell a Method scmap−cluster scmap−cell SVM RF b Method scmap−cluster scmap−cell SVM RF c Validation Discovery

Slide 20

Slide 20 text

Datasets Dataset Organism Tissue # of cells Experimental protocol Yan human Embryo development 90 Tang et al Goolam mouse Embryo development 124 Smart-Seq2 Deng mouse Embryo development 268 Smart-Seq Smart-Seq2 Pollen human Cerebral cortex 301 SMARTer Li human Colorectal tumors 561 SMARTer Usoskin mouse Brain 622 STRT-Seq Kolodziejczyk mouse Embryo stem cells 704 SMARTer Xin human Pancreas 1492 SMARTer Tasic mouse Cortex 1679 SMARTer Baron mouse Pancreas 1886 inDrop Muraro human Pancreas 2126 CEL-Seq2 Segerstolpe human Pancreas 2209 Smart-Seq2 Klein mouse Embryo stem cells 2717 inDrop Zeisel mouse Brain 3005 STRT-Seq UMI Baron human Pancreas 8569 inDrop Shekhar mouse Retina 27499 Drop-Seq Macosko mouse Retina 44808 Drop-Seq We used publicly available datasets to validate and benchmark scmap In all datasets the cell types were identified by the authors

Slide 21

Slide 21 text

Algorithm 1. Feature (gene, transcript) selection 2. Index creation 3. Projection www.bioconductor.org www.bioconductor.org scmap

Slide 22

Slide 22 text

Feature selection (Reference) Curse of dimensionality • With increased dimensions data becomes sparse • Definitions of density and distance between points become less meaningful • Classification algorithms do not work well https://shapeofdata.wordpress.com/2013/04/02/the-curse-of-dimensionality/ … N = 2 N = 3 N = 16 N = 17

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content