Slide 1

Slide 1 text

Binaural Sound Source Localisation and Tracking using a Dynamic Spherical Head Model Christopher Schymura, Fiete Winter, Dorothea Kolossa, Sascha Spors September 7, 2015

Slide 2

Slide 2 text

Introduction Task: Tracking a moving sound source x y ψk φk T ˙ φk 1 / 9

Slide 3

Slide 3 text

Introduction Some existing approaches for sound source tracking: [Portello et al. (2011), Traa & Smaragdis (2013)] using Kalman filters [Ward et al. (2003), Lu & Cooke (2011)] using particle filters 2 / 9

Slide 4

Slide 4 text

Introduction Some existing approaches for sound source tracking: [Portello et al. (2011), Traa & Smaragdis (2013)] using Kalman filters [Ward et al. (2003), Lu & Cooke (2011)] using particle filters Head rotations can improve localisation by resolving front-back ambiguities (see [Wallach (1940), Blauert(1997)]). 2 / 9

Slide 5

Slide 5 text

Introduction Some existing approaches for sound source tracking: [Portello et al. (2011), Traa & Smaragdis (2013)] using Kalman filters [Ward et al. (2003), Lu & Cooke (2011)] using particle filters Head rotations can improve localisation by resolving front-back ambiguities (see [Wallach (1940), Blauert(1997)]). Computational models investigating the effects of head movements: [Schymura et al. (2014), May et al. (2015), Ma et al. (2015)] 2 / 9

Slide 6

Slide 6 text

System overview xk+1 = f(xk , uk ) + vk ˆ yk = h(xk ) + wk + ˆ yk yk − Process and measurement model equations ˆ xk = ˆ x− k + Kk ˆ ek ˆ ek ˆ x− k State estimation uk = g(ˆ xk ) ˆ xk Controller • uk 3 / 9

Slide 7

Slide 7 text

System overview xk+1 = f(xk , uk ) + vk ˆ yk = h(xk ) + wk + ˆ yk yk − Process and measurement model equations ˆ xk = ˆ x− k + Kk ˆ ek ˆ ek ˆ x− k State estimation uk = fu (ˆ xk ) ˆ xk • Controller • uk 3 / 9

Slide 8

Slide 8 text

Process model State space: xk = φk ˙ φk ψk T 4 / 9

Slide 9

Slide 9 text

Process model State space: xk = φk ˙ φk ψk T Process model: xk+1 =   φk+1 ˙ φk+1 ψk+1   =   φk + T ˙ φk + vφ, k ˙ φk + v ˙ φ, k sat(ψk + T ˙ ψmax uk , ψmax ) + vψ, k   4 / 9

Slide 10

Slide 10 text

Process model State space: xk = φk ˙ φk ψk T Process model: xk+1 =   φk+1 ˙ φk+1 ψk+1   =   φk + T ˙ φk + vφ, k ˙ φk + v ˙ φ, k sat(ψk + T ˙ ψmax uk , ψmax ) + vψ, k   vφ, k ∼ N(0, σ2 φ ), v ˙ φ, k ∼ N(0, σ2 ˙ φ ), vψ, k ∼ N(0, σ2 ψ ) sat(x, xmax ) = min(|x|, xmax ) · sgn(x), uk ∈ [−1, 1] 4 / 9

Slide 11

Slide 11 text

Binaural front-end . . . g1 (n) gM (n) . . . g1 (n) gM (n) sL (n) • sR (n) • . . . . . . Binaural Processor τ1, k τM, k . . . δ1, k δM, k . . . yk = τ1, k , · · · , τM, k , δ1, k , · · · , δM, k T 5 / 9

Slide 12

Slide 12 text

Measurement model Spherical head model [Brungart (1999), Algazi et al. (2001)]: Ri (xk , ω) = c 4πωa2 ∞ ν=0 hν ω c d hν ω c a (2ν + 1) Lν sin(ϑear ) cos (φk − ψk − φi ) i ∈ {R, L} a xL ϑear xR φR xps φps z x 6 / 9

Slide 13

Slide 13 text

Measurement model Spherical head model [Brungart (1999), Algazi et al. (2001)]: Ri (xk , ω) = c 4πωa2 ∞ ν=0 hν ω c d hν ω c a (2ν + 1) Lν sin(ϑear ) cos (φk − ψk − φi ) i ∈ {R, L} a xL ϑear xR φR xps φps z x Spherical head parameters, taken from [Algazi et al. (2001)]: Head radius a: 8.5 cm Ear’s azimuth angle φi : 93.60◦ Ear’s polar angle ϑear : 110.67◦ 6 / 9

Slide 14

Slide 14 text

Head rotation strategies Evaluation of three different approaches: No head rotation Periodic sweeping Smooth posterior mean fu 0 sin 2πk T Tp |φk−ψk| 1+|φk−ψk| sgn φk − ψk Type - feed-forward feedback 7 / 9

Slide 15

Slide 15 text

Evaluation results Source position [deg] 30 60 90 120 150 Circular RMSE [deg] 0 20 40 60 80 100 120 140 Static head at 0° Periodic scanning around 0° Smooth posterior mean Static scenario Initial source position [deg] 30 60 90 120 150 Circular RMSE [deg] 0 20 40 60 80 100 120 140 Static head at 0° Periodic scanning around 0° Smooth posterior mean Dynamic scenario Evaluation metric: cRMSE = 1 K K k=1 min l∈Z ˆ φk − φk + 2πl 2 8 / 9

Slide 16

Slide 16 text

Summary A binaural model for localisation and tracking of moving sound sources using continuous head rotations was proposed. 9 / 9

Slide 17

Slide 17 text

Summary A binaural model for localisation and tracking of moving sound sources using continuous head rotations was proposed. The model allows for treating the localisation task as a closed-loop control problem. 9 / 9

Slide 18

Slide 18 text

Summary A binaural model for localisation and tracking of moving sound sources using continuous head rotations was proposed. The model allows for treating the localisation task as a closed-loop control problem. Future extensions of the model may aim at investigating alternative control strategies, estimation of source distance and introducing additional degrees of freedom (e.g. translatory movements). 9 / 9

Slide 19

Slide 19 text

Summary A binaural model for localisation and tracking of moving sound sources using continuous head rotations was proposed. The model allows for treating the localisation task as a closed-loop control problem. Future extensions of the model may aim at investigating alternative control strategies, estimation of source distance and introducing additional degrees of freedom (e.g. translatory movements). Thank you for your attention! 9 / 9