Slide 1

Slide 1 text

関西大学総合情報学部 浅野 晃 画像情報処理 2024年度秋学期 第2部・画像情報圧縮 / 第6回 ベクトルと行列について 高速フーリエ変換

Slide 2

Slide 2 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルと行列の考え方 2 たくさんの数の組を,ひとまとめに計算する ひとつの組がいくつの数でできていても, 同じように計算できるようにする 組の中身を意識せずにすむことによって, さらに複雑な計算を考えることができる (現代のプログラミングも同じ考えかた)

Slide 3

Slide 3 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2 この計算を

Slide 4

Slide 4 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2 この計算を z = a1 a2 x1 x2 と書く

Slide 5

Slide 5 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2 この計算を z = a1 a2 x1 x2 と書く

Slide 6

Slide 6 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 z = a1x1 + a2x2 この計算を z = a1 a2 x1 x2 と書く

Slide 7

Slide 7 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 + a2x2 この計算を z = a1 a2 x1 x2 と書く

Slide 8

Slide 8 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 + a2x2 この計算を z = a1 a2 x1 x2 と書く 列 ベ ク ト ル

Slide 9

Slide 9 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 + a2x2 この計算を z = a1 a2 x1 x2 と書く 列 ベ ク ト ル

Slide 10

Slide 10 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算 3 行ベクトル z = a1x1 + a2x2 この計算を z = a1 a2 x1 x2 と書く 列 ベ ク ト ル

Slide 11

Slide 11 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題1 4 問題 1 次のベクトルの計算をしてください。 1 2 3 4 Pause ⏸

Slide 12

Slide 12 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題1 5 問題 1 次のベクトルの計算をしてください。 1 2 3 4 (解答例) 1 2 3 4 = 1 × 3 + 2 × 4 = 3 + 8 = 11 ■

Slide 13

Slide 13 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2

Slide 14

Slide 14 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2

Slide 15

Slide 15 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2

Slide 16

Slide 16 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2

Slide 17

Slide 17 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2

Slide 18

Slide 18 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2

Slide 19

Slide 19 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2

Slide 20

Slide 20 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ベクトルの計算が2つ 6 この計算をまとめて と書く z(1) = a1(1) a2(1) x1 x2 z(2) = a1(2) a2(2) x1 x2 z(1) z(2) = a1(1) a2(1) a1(2) a2(2) x1 x2 行列

Slide 21

Slide 21 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題2 7 Pause ⏸ 問題 2 次の行列とベクトルの計算をしてください。 0 1 1 2 2 1

Slide 22

Slide 22 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題2 8 問題 2 次の行列とベクトルの計算をしてください。 0 1 1 2 2 1 (解答例) 0 1 1 2 2 1 = 0 × 2 + 1 × 1 1 × 2 + 2 × 1 = 1 4 ■

Slide 23

Slide 23 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2)

Slide 24

Slide 24 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2)

Slide 25

Slide 25 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル x1 x2

Slide 26

Slide 26 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル x1 x2 行列をかける a1(1) a2(1) a1(2) a2(2)

Slide 27

Slide 27 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル x1 x2 行列をかける a1(1) a2(1) a1(2) a2(2)

Slide 28

Slide 28 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 図形的意味 9 原点O X 点(x1, x2) ベクトル x1 x2 行列をかける a1(1) a2(1) a1(2) a2(2) z(1) z(2) 別のベクトルに変換

Slide 29

Slide 29 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題3 10 Pause ⏸ 問題 3 問題 2 のベクトル 2 1 と,問題 2 の計算結果のベクトルを,座標平面に図示してください。      

Slide 30

Slide 30 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題3 11 点(2,1) 行列 点(1,4) 0 1 1 2 をかける O 図 2: 問題 3 の解答例. 問題 3 問題 2 のベクトル 2 1 と,問題 2 の計算結果のベクトルを,座標平面に図示してください。      

Slide 31

Slide 31 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 定数倍の計算 12 s11 s12 s21 s22 a1 a2 = λ a1 a2    

Slide 32

Slide 32 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 定数倍の計算 12 s11 s12 s21 s22 a1 a2 = λ a1 a2    

Slide 33

Slide 33 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 定数倍の計算 12 の意味 s11 s12 s21 s22 a1 a2 = λ a1 a2     λa1 λa2

Slide 34

Slide 34 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2)

Slide 35

Slide 35 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2)

Slide 36

Slide 36 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)

Slide 37

Slide 37 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)

Slide 38

Slide 38 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)        

Slide 39

Slide 39 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)        

Slide 40

Slide 40 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)        

Slide 41

Slide 41 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2)         行列とベクトルの計算が2つ

Slide 42

Slide 42 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ

Slide 43

Slide 43 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ λ(1) に関する計算

Slide 44

Slide 44 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ λ(1) に関する計算

Slide 45

Slide 45 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ λ(1) に関する計算

Slide 46

Slide 46 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ λ(1) に関する計算

Slide 47

Slide 47 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ λ(1) に関する計算

Slide 48

Slide 48 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ λ(1) に関する計算

Slide 49

Slide 49 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列と行列の計算 13 この計算をまとめて s11 s12 s21 s22 a1(1) a2(1) = λ(1) a1(1) a2(1) s11 s12 s21 s22 a1(2) a2(2) = λ(2) a1(2) a2(2) s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)         行列とベクトルの計算が2つ λ(1) に関する計算

Slide 50

Slide 50 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 14 Pause ⏸ 問題 4 次の行列と行列の計算をしてください。 0 1 1 2 2 1 1 0

Slide 51

Slide 51 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 15 問題 4 次の行列と行列の計算をしてください。 0 1 1 2 2 1 1 0 (解答例)右側の行列を, 2 1 と 1 0 の 2 つのベクトルに分けます。 ひとつめのベクトルに対しては 0 1 1 2 2 1 = 0 × 2 + 1 × 1 1 × 2 + 2 × 1 = 1 4

Slide 52

Slide 52 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 16 となり,ふたつめのベクトルに対しては 0 1 1 2 1 0 = 0 × 1 + 1 × 0 1 × 1 + 2 × 0 = 0 1 となります。よって,これらの 2 つのベクトルを並べて 0 1 1 2 2 1 1 0 = 1 0 4 1 となります。■

Slide 53

Slide 53 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題4 16 となり,ふたつめのベクトルに対しては 0 1 1 2 1 0 = 0 × 1 + 1 × 0 1 × 1 + 2 × 0 = 0 1 となります。よって,これらの 2 つのベクトルを並べて 0 1 1 2 2 1 1 0 = 1 0 4 1 となります。■ 0 1 1 2 2 1 1 0

Slide 54

Slide 54 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 17 s11 s12 s21 s22 a1 a2 = λ a1 a2     は,

Slide 55

Slide 55 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 17 s11 s12 s21 s22 a1 a2 = λ a1 a2           s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1 a2 . . . ap       = λ       a1 a2 . . . ap       は,

Slide 56

Slide 56 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 18 s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)     は,

Slide 57

Slide 57 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 18 s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)           s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) は,

Slide 58

Slide 58 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 要素がp個の場合 18 s11 s12 s21 s22 a1(1) a1(2) a2(1) a2(2) = a1(1) a1(2) a2(1) a2(2) λ(1) 0 0 λ(2)           s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) は, なんのために???

Slide 59

Slide 59 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19       s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10)

Slide 60

Slide 60 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19       s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) S

Slide 61

Slide 61 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19       s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) S P

Slide 62

Slide 62 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19       s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) S P P

Slide 63

Slide 63 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19       s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) S P P Λ

Slide 64

Slide 64 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19       s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) SP = PΛ S P P Λ

Slide 65

Slide 65 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列を1文字で表す 19       s11 s12 · · · s1p s12 s22 · · · s2p . . . ... sp1 sp2 · · · spp             a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)       =       a1(1) a1(2) · · · a1(p) a2(1) a2(2) · · · a2(p) . . . ... ap(1) ap(2) · · · ap(p)             λ(1) 0 λ(2) ... 0 λ(p)       (10) SP = PΛ 複雑な計算を,あたかも数の 計算のように単純に考える S P P Λ

Slide 66

Slide 66 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ただし 20 行列の積は,交換ができない ABとBAが等しいとは限らない

Slide 67

Slide 67 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義 プリ 行列A

Slide 68

Slide 68 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義 プリ 行列A a b c d 講義 プリ

Slide 69

Slide 69 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義 プリ 行列A a b c d 講義 プリ

Slide 70

Slide 70 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義 プリ 行列A a b c d 講義 プリ a c b d を使

Slide 71

Slide 71 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義 プリ 行列A 転置行列 a b c d 講義 プリ a c b d を使

Slide 72

Slide 72 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 a b c d 講義 プリ 行列A 転置行列 a b c d 講義 プリ a c b d を使 tA, At, AT , A

Slide 73

Slide 73 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 転置行列・対称行列 21 ある行列とその転置行列が同じとき,対称行列という a b c d 講義 プリ 行列A 転置行列 a b c d 講義 プリ a c b d を使 tA, At, AT , A

Slide 74

Slide 74 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題5 22 Pause ⏸ 問題 5 1. 1 2 0 1 の転置行列を求めてください。 2. 1 2 0 1 と 1 0 0 1 は,それぞれは対称行列ですか。      

Slide 75

Slide 75 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題5 23 (解答例) 1. 1 0 2 1 です。 2. 1 2 0 1 の転置行列は 1 0 2 1 で,もとの行列とは異なるので,対称行列ではありません。一方,   1 0 0 1 の転置行列は 1 0 0 1 で,もとの行列と同じなので,これは対称行列です。■

Slide 76

Slide 76 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない

Slide 77

Slide 77 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A = I

Slide 78

Slide 78 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A = I 単位行列 (かけ算をしても何もおこらない)

Slide 79

Slide 79 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A = I 単位行列 (かけ算をしても何もおこらない) 1 0 0 1

Slide 80

Slide 80 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 逆行列 24 行列には割り算はない となるA-1を,Aの逆行列という AA−1 = A−1A = I 単位行列 (かけ算をしても何もおこらない) 1 0 0 1 数の場合は 行列の場合は   a × 1 a (逆元) = 1 (単位元)     AA−1 (逆行列) = I(単位行列)

Slide 81

Slide 81 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義 プリ 直交行列の列ベクトルどうしは直交している 逆行列が転置行列と同じであるような行列を直交行列という

Slide 82

Slide 82 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義 プリ 直交行列の列ベクトルどうしは直交している 直交した2つのベクトルは, 直交行列で変換されても直交している 逆行列が転置行列と同じであるような行列を直交行列という

Slide 83

Slide 83 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義 プリ 直交行列の列ベクトルどうしは直交している 直交した2つのベクトルは, 直交行列で変換されても直交している 逆行列が転置行列と同じであるような行列を直交行列という

Slide 84

Slide 84 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 直交行列 25 a b c d 講義 プリ 直交行列の列ベクトルどうしは直交している 直交行列で変換 直交行列で変換 直交した2つのベクトルは, 直交行列で変換されても直交している 逆行列が転置行列と同じであるような行列を直交行列という

Slide 85

Slide 85 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題6 26 Pause ⏸ 問題 6 R = 1 √ 2 1 1 −1 1 が直交行列であることを確かめてください。

Slide 86

Slide 86 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題6 27 (解答例)次のとおりです。 R R = 1 √ 2 1 −1 1 1 1 √ 2 1 1 −1 1 = 1 2 1 × 1 + (−1) × (−1) 1 × 1 + (−1) × 1 1 × 1 + 1 × (−1) 1 × 1 + 1 × 1 = 1 0 0 1 = I RR = 1 √ 2 1 1 −1 1 1 √ 2 1 −1 1 1 = 1 2 1 × 1 + 1 × 1 (−1) × 1 + 1 × 1 1 × (−1) + 1 × 1 (−1) × (−1) + 1 × 1 = 1 0 0 1 = I ■

Slide 87

Slide 87 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題7 28 Pause ⏸ 問題 7 1. ベクトル 1 √ 2 1 −1 と 1 √ 2 1 1 が直交していることを,図に描いて確認してください。 2. 座標軸の x 軸はベクトル 1 0 で,y 軸はベクトル 0 1 で,それぞれ表されます。これらのベク トルを直交行列 1 √ 2 1 1 −1 1 で変換して,変換後のベクトルも直交していることを図で確認して ください。

Slide 88

Slide 88 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題7 29 (解答例)       1. 図 4 のとおりで,この 2 つのベクトルは直交しています。 点 O 点 ( 1 2 , 1 2 ) ( 1 2 , − 1 2 ) 図 4: 問題 7-1.

Slide 89

Slide 89 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 問題7 30 行列 をかけると 直交のまま回転 O 1 2 ( 1 1 1 −1) ( 1 0) ( 0 1) 図 5: 問題 7-2. 2. x 軸をこの行列で変換すると 1 √ 2 1 1 −1 1 1 0 = 1 √ 2 − 1 √ 2 で,y 軸をこの行列で変換すると 1 √ 2 1 1 −1 1 0 1 = 1 √ 2 1 √ 2       です。つまり,この行列の 2 つの列ベクトルがそのまま取り出されます(上で出てきた「単位行 列」を思い出してください) 。したがって,図 5 のように,x, y 軸が,直交したまま 45 度回転した ものに変換されたということができます。■

Slide 90

Slide 90 text

20 31

Slide 91

Slide 91 text

20 31 高速フーリエ変換🤔🤔

Slide 92

Slide 92 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 「高速」フーリエ変換とは 32 高速フーリエ変換(Fast Fourier Transformation, FFT) 離散フーリエ変換の計算に含まれる掛け算の回数を減らす工夫 コンピュータでは,掛け算は足し算に比べて時間がかかるので 掛け算を減らすと全体の計算にかかる時間を短くできる 例えば 5 × 4 + 3 × 5 5 × (4 + 3) 掛け算は2回 掛け算は1回

Slide 93

Slide 93 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 4点だけの信号の離散フーリエ変換 33 4点だけの信号(N = 4)の離散フーリエ変換を これを行列で書いてみる 離散フーリエ変換の式は 1つの を計算するのに,掛け算を4回 U( ) 全部で 回の掛け算😵😵 42 = 16 U(k) = 3 n=0 u(n) exp −i2π k 4 n (k = 0, 1, . . . , 3)

Slide 94

Slide 94 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 行列で表すと 34 行列で表すと とおいて W ≡ exp −i 2π 4          U(0) U(1) U(2) U(3)      =      W0·0 W0·1 W0·2 W0·3 W1·0 W1·1 W1·2 W1·3 W2·0 W2·1 W2·2 W2·3 W3·0 W3·1 W3·2 W3·3           u(0) u(1) u(2) u(3)      すなわち      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9           u(0) u(1) u(2) u(3)     

Slide 95

Slide 95 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9           u(0) u(1) u(2) u(3)           U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9           u(0) u(2) u(1) u(3)     

Slide 96

Slide 96 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9           u(0) u(1) u(2) u(3)           U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9           u(0) u(2) u(1) u(3)     

Slide 97

Slide 97 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9           u(0) u(1) u(2) u(3)           U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9           u(0) u(2) u(1) u(3)     

Slide 98

Slide 98 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9           u(0) u(1) u(2) u(3)           U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9           u(0) u(2) u(1) u(3)     

Slide 99

Slide 99 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 順序を入れ替える 35 右辺のベクトルで,要素の順序を入れ替える      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W1 W2 W3 W0 W2 W4 W6 W0 W3 W6 W9           u(0) u(1) u(2) u(3)           U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9           u(0) u(2) u(1) u(3)     

Slide 100

Slide 100 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 指数関数/三角関数の性質を使って 36 という周期関数の性質があるので W4 = exp −i2π 4 4 = 1 = W0      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W0 W2 W2 W0 W2 W3 W5           u(0) u(2) u(1) u(3)           U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W4 W2 W6 W0 W6 W3 W9           u(0) u(2) u(1) u(3)      は, と表せる

Slide 101

Slide 101 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 2つの行列の積に分ける 37 の右辺の行列を,2つに分ける      U(0) U(1) U(2) U(3)      =      W0 W0 W0 W0 W0 W2 W1 W3 W0 W0 W2 W2 W0 W2 W3 W5           u(0) u(2) u(1) u(3)          と表せる      U(0) U(1) U(2) U(3)      =      W0 W0 W0W0 W0W0 W0 W2 W1W0 W1W2 W0 W0 W2W0 W2W0 W0 W2 W3W0 W3W2           u(0) u(2) u(1) u(3)      =      1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3           W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2           u(0) u(2) u(1) u(3)     

Slide 102

Slide 102 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは      U(0) U(1) U(2) U(3)      =      1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3           W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2           u(0) u(2) u(1) u(3)      W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている

Slide 103

Slide 103 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは      U(0) U(1) U(2) U(3)      =      1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3           W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2           u(0) u(2) u(1) u(3)      W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回

Slide 104

Slide 104 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは      U(0) U(1) U(2) U(3)      =      1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3           W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2           u(0) u(2) u(1) u(3)      W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回

Slide 105

Slide 105 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは      U(0) U(1) U(2) U(3)      =      1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3           W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2           u(0) u(2) u(1) u(3)      W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回 掛け算4回

Slide 106

Slide 106 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは      U(0) U(1) U(2) U(3)      =      1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3           W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2           u(0) u(2) u(1) u(3)      W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回 掛け算4回 掛け算の回数は 回 4 + 4 × 2 = 12

Slide 107

Slide 107 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 後半の「行列×ベクトル」は 38 の後半の 行列×ベクトルは      U(0) U(1) U(2) U(3)      =      1 0 W0 0 0 1 0 W1 1 0 W2 0 0 1 0 W3           W0 W0 0 0 W0 W2 0 0 0 0 W0 W0 0 0 W0 W2           u(0) u(2) u(1) u(3)      W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) この2つの「分割された行列」の 計算になっている Wの掛け算4回 掛け算4回 掛け算4回 掛け算の回数は 回 4 + 4 × 2 = 12 元の 回から減った💡💡 42 = 16

Slide 108

Slide 108 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 N=8の場合は 39 これらは,N=2のフーリエ変換 W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) N=8 のときは N=8 のフーリエ変換 → 掛け算8回 + 2 × ( N=4 のフーリエ変換) → 掛け算8回 + 2 × (掛け算4回 + 2 × ( N=2 のフーリエ変換 ) ) → 掛け算8回 + 掛け算8回 + 2 × 2 × 掛け算4回

Slide 109

Slide 109 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 N=8の場合は 39 これらは,N=2のフーリエ変換 W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) N=8 のときは N=8 のフーリエ変換 → 掛け算8回 + 2 × ( N=4 のフーリエ変換) → 掛け算8回 + 2 × (掛け算4回 + 2 × ( N=2 のフーリエ変換 ) ) → 掛け算8回 + 掛け算8回 + 2 × 2 × 掛け算4回 元々 回の掛け算が必要 82 = 64

Slide 110

Slide 110 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 N=8の場合は 39 これらは,N=2のフーリエ変換 W0 W0 W0 W2 u(0) u(2) W0 W0 W0 W2 u(1) u(3) N=8 のときは N=8 のフーリエ変換 → 掛け算8回 + 2 × ( N=4 のフーリエ変換) → 掛け算8回 + 2 × (掛け算4回 + 2 × ( N=2 のフーリエ変換 ) ) → 掛け算8回 + 掛け算8回 + 2 × 2 × 掛け算4回 掛け算の回数は 回💡💡 8 + 8 + 4 × 4 = 32 元々 回の掛け算が必要 82 = 64

Slide 111

Slide 111 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 「分割統治戦略」 40 このように,問題を半分,半分,半分,…に分けていく方法は, 他にもいろいろなところで使われている (「クイックソート」等) 一般に,N点のフーリエ変換には掛け算が 回必要だったのが, 段階に分割され,それぞれで 回の掛け算を行うので(概ね), に比例した回数で済む N2 log2 N N N log2 N

Slide 112

Slide 112 text

20 41

Slide 113

Slide 113 text

20 41 さて,第2部の本題へ💡💡

Slide 114

Slide 114 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮

Slide 115

Slide 115 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける

Slide 116

Slide 116 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまり変わらない部分

Slide 117

Slide 117 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまり変わらない部分 なんて,ある?

Slide 118

Slide 118 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまり変わらない部分 なんて,ある? 直交変換すると, 「大まかな部分」「細かい部分」が別に なるように組み替えられる

Slide 119

Slide 119 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまりかわらない部分は,ごまかす どの画像でもあまり変わらない部分 なんて,ある? 直交変換すると, 「大まかな部分」「細かい部分」が別に なるように組み替えられる

Slide 120

Slide 120 text

42 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 第2部の本題へ 42 第2部は画像データ圧縮 画像を,各画像で大きく異なる部分と どの画像でもあまりかわらない部分にわける どの画像でもあまりかわらない部分は,ごまかす フーリエ変換も,行列で表すと直交変換の一種 どの画像でもあまり変わらない部分 なんて,ある? 直交変換すると, 「大まかな部分」「細かい部分」が別に なるように組み替えられる