Slide 1

Slide 1 text

. . . . . . . The LingPy library for quantitative historical linguistics Background, theory, and application Johann-Mattis List Forschungszentrum Deutscher Sprachatlas Philipps-Universität Marburg 15.02.2014 1 / 30

Slide 2

Slide 2 text

Background LingPy 2 / 30

Slide 3

Slide 3 text

Background What is LingPy? 3 / 30

Slide 4

Slide 4 text

Background What is LingPy? Python library for automatic tasks in historical linguistics 3 / 30

Slide 5

Slide 5 text

Background What is LingPy? Python library for automatic tasks in historical linguistics project homepage at http://lingpy.org 3 / 30

Slide 6

Slide 6 text

Background What is LingPy? Python library for automatic tasks in historical linguistics project homepage at http://lingpy.org code base for developers at https://github.com/lingpy/lingpy 3 / 30

Slide 7

Slide 7 text

Background What is LingPy? Python library for automatic tasks in historical linguistics project homepage at http://lingpy.org code base for developers at https://github.com/lingpy/lingpy supports Python2 and Python3 3 / 30

Slide 8

Slide 8 text

Background What is LingPy? Python library for automatic tasks in historical linguistics project homepage at http://lingpy.org code base for developers at https://github.com/lingpy/lingpy supports Python2 and Python3 works on Mac, Linux, and (basically also) Windows 3 / 30

Slide 9

Slide 9 text

Background What is LingPy? Python library for automatic tasks in historical linguistics project homepage at http://lingpy.org code base for developers at https://github.com/lingpy/lingpy supports Python2 and Python3 works on Mac, Linux, and (basically also) Windows current release: 2.2 3 / 30

Slide 10

Slide 10 text

Background What is LingPy? Python library for automatic tasks in historical linguistics project homepage at http://lingpy.org code base for developers at https://github.com/lingpy/lingpy supports Python2 and Python3 works on Mac, Linux, and (basically also) Windows current release: 2.2 offers methods for sequence modeling, phonetic alignment, cognate and borrowing detection, and tools for data manipulation and visualization 3 / 30

Slide 11

Slide 11 text

Background What can be done with LingPy? tokenize phonetic sequences 4 / 30

Slide 12

Slide 12 text

Background What can be done with LingPy? align phonetic sequences 4 / 30

Slide 13

Slide 13 text

Background What can be done with LingPy? search for cognates 4 / 30

Slide 14

Slide 14 text

Background What can be done with LingPy? search for borrowings 4 / 30

Slide 15

Slide 15 text

Formats Formats 5 / 30

Slide 16

Slide 16 text

Formats Formats: Basics . . ID CONCEPT COUNTERPART IPA DOCULECT COGID 1 hand Hand hant German 1 2 hand hand hænd English 1 3 hand рука ruka Russian 2 4 hand рука ruka Ukrainian 2 5 leg Bein bain German 3 6 leg leg lɛg English 4 7 leg нога noga Russian 5 8 leg нога noha Ukrainian 5 9 Woldemort Waldemar valdemar German 6 10 Woldemort Woldemort wɔldemɔrt English 6 11 Woldemort Владимир vladimir Russian 6 12 Woldemort Володимир volodimir Ukrainian 6 13 Harry Harald haralt German 7 14 Harry Harry hæri English 7 15 Harry Гарри gari Russian 7 16 Harry Гаррi hari Ukrainian 7 6 / 30

Slide 17

Slide 17 text

Formats Formats: Basics . . CONCEPT GERMAN ENGLISH RUSSIAN UKRAINIAN hand Hand hand рука рука leg Bein leg нога нога Woldemort Waldemar Woldemort Владимир Володимир Harry Harald Harry Гарри Гаррi + Orthography + 7 / 30

Slide 18

Slide 18 text

Formats Formats: Basics . . CONCEPT GERMAN ENGLISH RUSSIAN UKRAINIAN hand hant hænd ruka ruka leg bain lɛg noga noha Woldemort valdəmar wɔldəmɔrt vladimir volodimir Harry haralt hæri gari hari + Entries in IPA + 8 / 30

Slide 19

Slide 19 text

Formats Formats: Basics . . CONCEPT GERMAN ENGLISH RUSSIAN UKRAINIAN hand 1 1 2 2 leg 3 4 5 5 Woldemort 6 6 6 6 Harry 7 7 7 7 + Cognate-IDs + 9 / 30

Slide 20

Slide 20 text

Formats Formats: Key-Value Extension . . # Wordlist # META @author: Potter, Harry @date: 2013-04-02 @tree: ((German,English),(Russian,Ukrainian)); @note: Use the data with care, it might have been charmed... # DATA ID CONCEPT COUNTERPART IPA DOCULECT COGID 1 hand Hand hant German 1 2 hand hand hænd English 1 3 hand рука ruka Russian 2 4 hand рука ruka Ukrainian 2 5 leg Bein bain German 3 ... ... ... ... ... ... 10 / 30

Slide 21

Slide 21 text

Formats Formats: Further Extensions . . # Wordlist # META @author:Potter, Harry @date:2012-11-07 # JSON { "taxa": [ "English", "German", "Russian", "Ukrainian" ] } 11 / 30

Slide 22

Slide 22 text

Formats Formats: Further Extensions . . # DISTANCES 4 English 0.000000 0.333333 0.666667 0.666667 German 0.333333 0.000000 0.666667 0.666667 Russian 0.666667 0.666667 0.000000 0.000000 Ukrainian 0.666667 0.666667 0.000000 0.000000 # DATA ID CONCEPT COUNTERPART IPA DOCULECT COGID # 1 hand Hand hant German 1 2 hand hand hænd English 1 ... ... ... ... ... ... 12 / 30

Slide 23

Slide 23 text

Representation Representation 13 / 30

Slide 24

Slide 24 text

Representation Sound Classes Sound Classes: General Idea . Sound Classes . . . . . . . . 14 / 30

Slide 25

Slide 25 text

Representation Sound Classes Sound Classes: General Idea . Sound Classes . . . . . . . . Sounds which often occur in correspondence relations in genetically related languages can be clustered into classes (types). It is assumed “that phonetic correspondences inside a‘type’ are more regular than those between different‘types’” (Dolgopolsky 1986: 35). k g p b ʧ ʤ f v t d ʃ ʒ θ ð s z 1 14 / 30

Slide 26

Slide 26 text

Representation Sound Classes Sound Classes: General Idea . Sound Classes . . . . . . . . Sounds which often occur in correspondence relations in genetically related languages can be clustered into classes (types). It is assumed “that phonetic correspondences inside a‘type’ are more regular than those between different‘types’” (Dolgopolsky 1986: 35). k g p b ʧ ʤ f v t d ʃ ʒ θ ð s z 1 14 / 30

Slide 27

Slide 27 text

Representation Sound Classes Sound Classes: General Idea . Sound Classes . . . . . . . . Sounds which often occur in correspondence relations in genetically related languages can be clustered into classes (types). It is assumed “that phonetic correspondences inside a‘type’ are more regular than those between different‘types’” (Dolgopolsky 1986: 35). k g p b ʧ ʤ f v t d ʃ ʒ θ ð s z 1 14 / 30

Slide 28

Slide 28 text

Representation Sound Classes Sound Classes: General Idea . Sound Classes . . . . . . . . Sounds which often occur in correspondence relations in genetically related languages can be clustered into classes (types). It is assumed “that phonetic correspondences inside a‘type’ are more regular than those between different‘types’” (Dolgopolsky 1986: 35). K T P S 1 14 / 30

Slide 29

Slide 29 text

Representation Sound Classes Sound Classes: Scoring Functions LingPy offers default scoring functions for three standard sound-class models (ASJP, SCA, DOLGO). The standard models vary regarding the roughness by which the continuum of sounds is split into discrete classes. The scoring functions are based on empirical data on sound correspondence frequencies (ASJP model, Brown et al. 2013), and on general theoretical models of the directionality and probability of sound change processes (SCA, DOLGO, see List 2012b for details). Scoring functions can be easily expanded by the user. 15 / 30

Slide 30

Slide 30 text

Representation Prosodic Strings Prosodic Strings 16 / 30

Slide 31

Slide 31 text

Representation Prosodic Strings Prosodic Strings Sound change occurs more frequently in prosodically weak positions (Geisler 1992). 16 / 30

Slide 32

Slide 32 text

Representation Prosodic Strings Prosodic Strings Sound change occurs more frequently in prosodically weak positions (Geisler 1992). Given a sonority profile, one can distinguish positions that differ regarding their prosodic context. 16 / 30

Slide 33

Slide 33 text

Representation Prosodic Strings Prosodic Strings Sound change occurs more frequently in prosodically weak positions (Geisler 1992). Given a sonority profile, one can distinguish positions that differ regarding their prosodic context. Prosodic strings indicate different prosodic contexts for each segment. 16 / 30

Slide 34

Slide 34 text

Representation Prosodic Strings Prosodic Strings Sound change occurs more frequently in prosodically weak positions (Geisler 1992). Given a sonority profile, one can distinguish positions that differ regarding their prosodic context. Prosodic strings indicate different prosodic contexts for each segment. Substitution scores and gap penalties can be modified depending on the underlying prosodic string. 16 / 30

Slide 35

Slide 35 text

Representation Prosodic Strings Prosodic Strings Sound change occurs more frequently in prosodically weak positions (Geisler 1992). Given a sonority profile, one can distinguish positions that differ regarding their prosodic context. Prosodic strings indicate different prosodic contexts for each segment. Substitution scores and gap penalties can be modified depending on the underlying prosodic string. Prosodic strings are an alternative to n-gram approaches: they also handle context, but their advantage is that they are more abstract and less data-dependent than n-grams. 16 / 30

Slide 36

Slide 36 text

Representation Prosodic Strings Prosodic Strings j a b ə l k a 17 / 30

Slide 37

Slide 37 text

Representation Prosodic Strings Prosodic Strings j a b ə l k a sonority increases 17 / 30

Slide 38

Slide 38 text

Representation Prosodic Strings Prosodic Strings j a b ə l k a ↑ △ ↑ △ ↓ ↑ △ ↑ ascending △ maximum ↓ descending 17 / 30

Slide 39

Slide 39 text

Representation Prosodic Strings Prosodic Strings j a b ə l k a ↑ △ ↑ △ ↓ ↑ △ o strong weak 17 / 30

Slide 40

Slide 40 text

Representation Prosodic Strings Prosodic Strings phonetic sequence j a b ə l k a SCA model J A P E L K A ASJP model y a b I l k a DOLGO model J V P V R K V sonority profile 6 7 1 7 5 1 7 prosodic string # v C v c C > Relative Weight 2.0 1.5 1.5 1.3 1.1 1.5 0.7 17 / 30

Slide 41

Slide 41 text

Analysis * * * * * * * * * * * * * v o l - d e m o r t v - l a d i m i r - v a l - d e m a r - Analysis 18 / 30

Slide 42

Slide 42 text

Analysis Phonetic Alignment Sound-Class-Based Phonetic Alignment (SCA) List, JM (2012). “SCA. Phonetic alignment based on sound classes”. In: New directions in logic, lan- guage, and computation. Ed. by M Slavkovik and D Lassiter. Berlin and Heidelberg: Springer, 32–51. 19 / 30

Slide 43

Slide 43 text

Analysis Phonetic Alignment Sound-Class-Based Phonetic Alignment (SCA) List, JM (2012). “SCA. Phonetic alignment based on sound classes”. In: New directions in logic, lan- guage, and computation. Ed. by M Slavkovik and D Lassiter. Berlin and Heidelberg: Springer, 32–51. method for pairwise and multiple phonetic alignment 19 / 30

Slide 44

Slide 44 text

Analysis Phonetic Alignment Sound-Class-Based Phonetic Alignment (SCA) List, JM (2012). “SCA. Phonetic alignment based on sound classes”. In: New directions in logic, lan- guage, and computation. Ed. by M Slavkovik and D Lassiter. Berlin and Heidelberg: Springer, 32–51. method for pairwise and multiple phonetic alignment internal sequence representation as sound classes and prosodic strings 19 / 30

Slide 45

Slide 45 text

Analysis Phonetic Alignment Sound-Class-Based Phonetic Alignment (SCA) List, JM (2012). “SCA. Phonetic alignment based on sound classes”. In: New directions in logic, lan- guage, and computation. Ed. by M Slavkovik and D Lassiter. Berlin and Heidelberg: Springer, 32–51. method for pairwise and multiple phonetic alignment internal sequence representation as sound classes and prosodic strings supports global, local, semi-global, and diagonal alignment analyses 19 / 30

Slide 46

Slide 46 text

Analysis Phonetic Alignment Sound-Class-Based Phonetic Alignment (SCA) List, JM (2012). “SCA. Phonetic alignment based on sound classes”. In: New directions in logic, lan- guage, and computation. Ed. by M Slavkovik and D Lassiter. Berlin and Heidelberg: Springer, 32–51. method for pairwise and multiple phonetic alignment internal sequence representation as sound classes and prosodic strings supports global, local, semi-global, and diagonal alignment analyses handles secondary sequence structures (morpheme, syllable boundaries) 19 / 30

Slide 47

Slide 47 text

Analysis Phonetic Alignment Sound-Class-Based Phonetic Alignment (SCA) List, JM (2012). “SCA. Phonetic alignment based on sound classes”. In: New directions in logic, lan- guage, and computation. Ed. by M Slavkovik and D Lassiter. Berlin and Heidelberg: Springer, 32–51. method for pairwise and multiple phonetic alignment internal sequence representation as sound classes and prosodic strings supports global, local, semi-global, and diagonal alignment analyses handles secondary sequence structures (morpheme, syllable boundaries) can identify swapped sites in multiple phonetic alignments 19 / 30

Slide 48

Slide 48 text

Analysis Phonetic Alignment Sound-Class-Based phonetic Alignment (SCA) INPUT jabl̩ko jabəlka jabləkə japkɔ 20 / 30

Slide 49

Slide 49 text

Analysis Phonetic Alignment Sound-Class-Based phonetic Alignment (SCA) CONVERSION (1) jabl̩ko → JAPLKU jabəlka → JAPELKA jabləkə → JAPLEKE japkɔ → JAPKU 20 / 30

Slide 50

Slide 50 text

Analysis Phonetic Alignment Sound-Class-Based phonetic Alignment (SCA) CONVERSION (2) jabl̩ko → #VCVC> jabəlka → #VCVcC> jabləkə → #VCCVC> japkɔ → #VcC> 20 / 30

Slide 51

Slide 51 text

Analysis Phonetic Alignment Sound-Class-Based phonetic Alignment (SCA) ALIGNMENT J A P - L - K U J A P E L - K A J A P - L E K E J A P - - - K U 20 / 30

Slide 52

Slide 52 text

Analysis Phonetic Alignment Sound-Class-Based phonetic Alignment (SCA) OUTPUT j a b - l̩ - k o j a b ə l - k a j a b - l ə k ə j a p - - - k ɔ 20 / 30

Slide 53

Slide 53 text

Analysis Cognate Detection LexStat List, JM (2012): “LexStat. Automatic detection of cognates in multilingual word- lists”. In: Proceedings of the EACL 2012 Joint Workshop of Visualization of Linguistic Patterns and Uncovering Language History from Multilingual Resour- ces.“LINGVIS & UNCLH 2012” (Avignon, 04/23–04/24/2012). 21 / 30

Slide 54

Slide 54 text

Analysis Cognate Detection LexStat List, JM (2012): “LexStat. Automatic detection of cognates in multilingual word- lists”. In: Proceedings of the EACL 2012 Joint Workshop of Visualization of Linguistic Patterns and Uncovering Language History from Multilingual Resour- ces.“LINGVIS & UNCLH 2012” (Avignon, 04/23–04/24/2012). multilingual and language-specific method for cognate detection 21 / 30

Slide 55

Slide 55 text

Analysis Cognate Detection LexStat List, JM (2012): “LexStat. Automatic detection of cognates in multilingual word- lists”. In: Proceedings of the EACL 2012 Joint Workshop of Visualization of Linguistic Patterns and Uncovering Language History from Multilingual Resour- ces.“LINGVIS & UNCLH 2012” (Avignon, 04/23–04/24/2012). multilingual and language-specific method for cognate detection alignment-based detection of regular sound correspondences 21 / 30

Slide 56

Slide 56 text

Analysis Cognate Detection LexStat List, JM (2012): “LexStat. Automatic detection of cognates in multilingual word- lists”. In: Proceedings of the EACL 2012 Joint Workshop of Visualization of Linguistic Patterns and Uncovering Language History from Multilingual Resour- ces.“LINGVIS & UNCLH 2012” (Avignon, 04/23–04/24/2012). multilingual and language-specific method for cognate detection alignment-based detection of regular sound correspondences re-alignment of the data with help of correspondence-based scoring functions 21 / 30

Slide 57

Slide 57 text

Analysis Cognate Detection LexStat List, JM (2012): “LexStat. Automatic detection of cognates in multilingual word- lists”. In: Proceedings of the EACL 2012 Joint Workshop of Visualization of Linguistic Patterns and Uncovering Language History from Multilingual Resour- ces.“LINGVIS & UNCLH 2012” (Avignon, 04/23–04/24/2012). multilingual and language-specific method for cognate detection alignment-based detection of regular sound correspondences re-alignment of the data with help of correspondence-based scoring functions flat cluster analysis for the detection of cognate sets 21 / 30

Slide 58

Slide 58 text

Analysis Cognate Detection LexStat ID Taxa Word Gloss GlossID IPA ..... ... ... ... ... ... ... ... 21 German Frau woman 20 frau ... 22 Dutch vrouw woman 20 vrɑu ... 23 English woman woman 20 wʊmən ... 24 Danish kvinde woman 20 kvenə ... 25 Swedish kvinna woman 20 kviːna ... 26 Norwegian kvine woman 20 kʋinə ... ... ... ... ... ... ... ... 22 / 30

Slide 59

Slide 59 text

Analysis Cognate Detection LexStat ID Taxa Word Gloss GlossID IPA CogID ... ... ... ... ... ... ... 21 German Frau woman 20 frau 1 22 Dutch vrouw woman 20 vrɑu 1 23 English woman woman 20 wʊmən 2 24 Danish kvinde woman 20 kvenə 3 25 Swedish kvinna woman 20 kviːna 3 26 Norwegian kvine woman 20 kʋinə 3 ... ... ... ... ... ... ... 22 / 30

Slide 60

Slide 60 text

Analysis Cognate Detection LexStat ID Taxa Word Gloss GlossID IPA CogID ... ... ... ... ... ... ... 21 German Frau woman 20 frau 1 22 Dutch vrouw woman 20 vrɑu 1 23 English woman woman 20 wʊmən 2 24 Danish kvinde woman 20 kvenə 3 25 Swedish kvinna woman 20 kviːna 3 26 Norwegian kvine woman 20 kʋinə 3 ... ... ... ... ... ... ... 22 / 30

Slide 61

Slide 61 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) List, JM, S Nelson-Sathi, H Geisler, und W Martin (2014). “Networks of lexical borrowing and lateral gene transfer in language and genome evolution”. BioEs- says 36.2, 141–150. 23 / 30

Slide 62

Slide 62 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) List, JM, S Nelson-Sathi, H Geisler, und W Martin (2014). “Networks of lexical borrowing and lateral gene transfer in language and genome evolution”. BioEs- says 36.2, 141–150. phylogeny-based method for borrowing detection 23 / 30

Slide 63

Slide 63 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) List, JM, S Nelson-Sathi, H Geisler, und W Martin (2014). “Networks of lexical borrowing and lateral gene transfer in language and genome evolution”. BioEs- says 36.2, 141–150. phylogeny-based method for borrowing detection uses parsimony analyses to detect cognate sets which cannot be explained with help of a given reference tree 23 / 30

Slide 64

Slide 64 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) List, JM, S Nelson-Sathi, H Geisler, und W Martin (2014). “Networks of lexical borrowing and lateral gene transfer in language and genome evolution”. BioEs- says 36.2, 141–150. phylogeny-based method for borrowing detection uses parsimony analyses to detect cognate sets which cannot be explained with help of a given reference tree selection of the best weighting model based on similar vocabulary size distribution 23 / 30

Slide 65

Slide 65 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) List, JM, S Nelson-Sathi, H Geisler, und W Martin (2014). “Networks of lexical borrowing and lateral gene transfer in language and genome evolution”. BioEs- says 36.2, 141–150. phylogeny-based method for borrowing detection uses parsimony analyses to detect cognate sets which cannot be explained with help of a given reference tree selection of the best weighting model based on similar vocabulary size distribution reconstructs a minimal lateral network of the data in which the minimal amount of lateral connections inferred by the best model is displayed 23 / 30

Slide 66

Slide 66 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) . . ---Lánzhōu . Fùzhōu -- . Xiāngtàn -- . M ěixiàn -- . H ongkong -- . ---Wǔhàn . ---Běijīng . ---Kùnmíng . Hángzhōu -- . Xiàmén -- . ---Chéngdū . Sùzhōu -- . Shànghǎi -- . Táiběi -- . ---Zhèngzhōu . Shèxiàn -- . ---Nánjīng . ---Guìyáng . W énzhōu -- . N ánníng -- . Tūnxī -- . ---Tiānjìn . Shāntóu -- . ---Xīníng . ---Q īngdǎo . ---Ürüm qi . ---Píngyáo . Nánchàng -- . ---Tàiyuán . Chángshā -- . Hǎikǒu -- . ---Héfèi . Jiàn'ǒu -- . ---Yīnchuàn . ---Hohhot . Táoyuán -- . ---Xī'ān . G uǎngzhōu -- . ---Harbin . ---Jìnán . 0 . 0 . 0 . Inferred Links Reference tree of the Chinese dialects 24 / 30

Slide 67

Slide 67 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) . . ---Lánzhōu . Fùzhōu -- . Xiāngtàn -- . M ěixiàn -- . H ongkong -- . ---Wǔhàn . ---Běijīng . ---Kùnmíng . Hángzhōu -- . Xiàmén -- . ---Chéngdū . Sùzhōu -- . Shànghǎi -- . Táiběi -- . ---Zhèngzhōu . Shèxiàn -- . ---Nánjīng . ---Guìyáng . W énzhōu -- . N ánníng -- . Tūnxī -- . ---Tiānjìn . Shāntóu -- . ---Xīníng . ---Q īngdǎo . ---Ürüm qi . ---Píngyáo . Nánchàng -- . ---Tàiyuán . Chángshā -- . Hǎikǒu -- . ---Héfèi . Jiàn'ǒu -- . ---Yīnchuàn . ---Hohhot . Táoyuán -- . ---Xī'ān . G uǎngzhōu -- . ---Harbin . ---Jìnán . 0 . 0 . 0 . Inferred Links MLN analysis, no borrowing allowed 24 / 30

Slide 68

Slide 68 text

Analysis Borrowing Detection Phylogeny-Based Borrowing Detection (PhyBo) . . ---Lánzhōu . Fùzhōu -- . Xiāngtàn -- . M ěixiàn -- . H ongkong -- . ---Wǔhàn . ---Běijīng . ---Kùnmíng . Hángzhōu -- . Xiàmén -- . ---Chéngdū . Sùzhōu -- . Shànghǎi -- . Táiběi -- . ---Zhèngzhōu . Shèxiàn -- . ---Nánjīng . ---Guìyáng . W énzhōu -- . N ánníng -- . Tūnxī -- . ---Tiānjìn . Shāntóu -- . ---Xīníng . ---Q īngdǎo . ---Ürüm qi . ---Píngyáo . Nánchàng -- . ---Tàiyuán . Chángshā -- . Hǎikǒu -- . ---Héfèi . Jiàn'ǒu -- . ---Yīnchuàn . ---Hohhot . Táoyuán -- . ---Xī'ān . G uǎngzhōu -- . ---Harbin . ---Jìnán . 1 . 4 . 8 . Inferred Links MLN analysis, best fit of borrowing and inheritance 24 / 30

Slide 69

Slide 69 text

Examples Examples 25 / 30

Slide 70

Slide 70 text

Examples Examples in form of an IPython Notebook along with a HowTo-script will be uploaded to http://lingulist.de/talks.php. 26 / 30

Slide 71

Slide 71 text

Outlook Outlook 27 / 30

Slide 72

Slide 72 text

Outlook We need to improve both the methods we use and the way we present them to the linguistic world. The following are just a few pending problems: 28 / 30

Slide 73

Slide 73 text

Outlook We need to improve both the methods we use and the way we present them to the linguistic world. The following are just a few pending problems: make it easier for non-programmers to access LingPy (a GUI, or some simple terminal-based framework, a full tutorial) 28 / 30

Slide 74

Slide 74 text

Outlook We need to improve both the methods we use and the way we present them to the linguistic world. The following are just a few pending problems: make it easier for non-programmers to access LingPy (a GUI, or some simple terminal-based framework, a full tutorial) make the results of LingPy analyses more transparent (plots, findings, predictions) 28 / 30

Slide 75

Slide 75 text

Outlook We need to improve both the methods we use and the way we present them to the linguistic world. The following are just a few pending problems: make it easier for non-programmers to access LingPy (a GUI, or some simple terminal-based framework, a full tutorial) make the results of LingPy analyses more transparent (plots, findings, predictions) conduct rigorous testing of LingPy analyses (benchmarking, test parameter settings) 28 / 30

Slide 76

Slide 76 text

Outlook We need to improve both the methods we use and the way we present them to the linguistic world. The following are just a few pending problems: make it easier for non-programmers to access LingPy (a GUI, or some simple terminal-based framework, a full tutorial) make the results of LingPy analyses more transparent (plots, findings, predictions) conduct rigorous testing of LingPy analyses (benchmarking, test parameter settings) develop the methods further and include further methods (borrowing detection, automatic linguistic reconstruction, morpheme detection) 28 / 30

Slide 77

Slide 77 text

That’s all for now... 29 / 30

Slide 78

Slide 78 text

Thank You! 30 / 30