Slide 1

Slide 1 text

Comparing Different Supervised Approaches to Hate Speech Detection 1Michele Corazza, 2Stefano Menini, 1Pınar Arslan, 2Rachele Sprugnoli, 1Elena Cabrio, 2Sara Tonelli, 1Serena Villata 1Universite Cote d’Azur, CNRS, Inria, I3S, France; 2Fondazione Bruno Kessler, Trento, Italy {firstname.lastname}@inria.fr; {menini, sprugnoli, satonelli}@fbk.eu

Slide 2

Slide 2 text

EVALITA 2018: subtasks Goal: a system to detect hate speech in Italian tweets and Facebook posts. Four binary classification subtasks were proposed: • Task 1: HaSpeeDe-FB: hate speech on Facebook posts; • Task 2: HaSpeeDe-TW: hate speech on Twitter posts; • Task 3.1: Cross-HaSpeeDe_FB: hate speech on Twitter posts by training on Facebook only; • Task 3.2: Cross-HaSpeeDe_TW: hate speech on Facebook posts by training on Twitter only.

Slide 3

Slide 3 text

Recurrent Neural Network Preprocessing Model Output ● Word Embeddings ● Social Features ● Mention replacement ● Hashtag splitting ● URL replacement

Slide 4

Slide 4 text

Linear SVC Preprocessing Model Output ● Mention replacement ● Hashtag removal ● URL replacement ● Stopwords removal ● Stemmer ● Unigrams ● Emotion Features

Slide 5

Slide 5 text

N-gram Based Neural Network Preprocessing Model Output ● Mention replacement ● Hashtag splitting ● URL replacement ● Lemmatizer ● Unigrams ● Bigrams ● Social Features

Slide 6

Slide 6 text

First Run (3rd ranking) Category P R F1 Non Hate Hate Macro AVG 0.763 0.858 0.810 0.687 0.898 0.793 0.723 0.877 0.800 Second Run (4th ranking) Non Hate Hate Macro AVG 0.716 0.859 0.788 0.703 0.867 0.785 0.709 0.863 0.786 Results (Subtasks 1, 2) Results on HaSpeeDe_FB First Run (6th ranking) Category P R F1 Non Hate Hate Macro AVG 0.873 0.675 0.774 0.827 0.750 0.788 0.850 0.711 0.780 Second Run (4th ranking) Non Hate Hate Macro AVG 0.842 0.755 0.799 0.899 0.648 0.774 0.870 0.698 0.784 Results on HaSpeeDe_TW

Slide 7

Slide 7 text

Results (Subtasks 3.1, 3.2) First Run (2nd ranking) Category P R F1 Non Hate Hate Macro AVG 0.810 0.497 0.653 0.675 0.670 0.672 0.736 0.570 0.653 Second Run (1st ranking) Non Hate Hate Macro AVG 0.818 0.494 0.656 0.660 0.694 0.677 0.731 0.580 0.654 Results on Cross-HaSpeeDe_FB First Run (4th ranking) Category P R F1 Non Hate Hate Macro AVG 0.493 0.822 0.658 0.703 0.656 0.679 0.580 0.730 0.655 Second Run (2nd ranking) Non Hate Hate Macro AVG 0.537 0.815 0.676 0.653 0.731 0.692 0.589 0.771 0.680 Results on Cross-HaSpeeDe_TW

Slide 8

Slide 8 text

Error Analysis Phenomena that tend to cause errors: • dialects / bad orthography “un se ponno sentì” “chia il potere in mano fa quello che vuole” • sarcasm “E adesso cosa gli danno? Una settimana in albergo 5 stelle?” • references to world knowledge “un certo Adolf sarebbe utile ancora oggi” • metaphorical expressions “Ruspali” “Esodatele!”

Slide 9

Slide 9 text

Error Analysis False positive: • misclassification of messages containing terrorista / terrorismo / immigrato “Il Giappone senza immigrati a corto di forza lavoro” → Poor coverage of EmoLex: • one-to-one English to Italian translation: e.g. to kill → uccidere - missing ammazzare/eliminare “ammazzare tutti i bambini, che domani diventeranno terroristi” “va eliminato fisicamente” HATE SPEECH

Slide 10

Slide 10 text

Models are open source! Recurrent and N-gram based Neural networks: https://gitlab.com/ashmikuz/creep-cyberbullying-classifier Linear SVC model: https://github.com/0707pinar/Hate-Speech-Detection/