Slide 1

Slide 1 text

Why big data is not data science

Slide 2

Slide 2 text

Roksolana Diachuk • Big Data Developer at Captify • Diversity & Inclusion ambassador for Captify Kyiv office • Women Who Code Kyiv Data Engineering Lead and Mentor • Speaker and traveller

Slide 3

Slide 3 text

Agenda 1. What is big Data 2. Difference between big data and data science 3. Practical cases

Slide 4

Slide 4 text

BIG DATA

Slide 5

Slide 5 text

BIG DATA

Slide 6

Slide 6 text

BIG DATA

Slide 7

Slide 7 text

5 VS

Slide 8

Slide 8 text

Volume Petabytes Terrabytes Gigabytes Exabytes

Slide 9

Slide 9 text

Velocity Batch data Streaming data

Slide 10

Slide 10 text

Variety

Slide 11

Slide 11 text

Veracity

Slide 12

Slide 12 text

Value

Slide 13

Slide 13 text

Big data Structured Unstructured Semi-structured

Slide 14

Slide 14 text

BIG DATA DATA SCIENCE

Slide 15

Slide 15 text

Garbage in - garbage out

Slide 16

Slide 16 text

General ML workflow

Slide 17

Slide 17 text

RDBMS ML model Metrics

Slide 18

Slide 18 text

RDBMS ML model Metrics BIG DATA DATA SCIENCE

Slide 19

Slide 19 text

Background

Slide 20

Slide 20 text

Data Scientist Data Analyst Data Engineer Data Communication Math, Stats, Algorithms Software Engineering

Slide 21

Slide 21 text

Software engineer

Slide 22

Slide 22 text

Data analysis

Slide 23

Slide 23 text

RESPONSIBILITIES

Slide 24

Slide 24 text

• Data processing and cleaning • Developing data pipelines • Storing data • Infrastructure • Data Pre-Processing • Data Analysis • Building ML models • ML models tuning

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

PRACTICAL CASES

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

CASE 1

Slide 30

Slide 30 text

Anomalies detected Streaming data Batch data Anomalies detection

Slide 31

Slide 31 text

Prophet Tableau Anomalies detection

Slide 32

Slide 32 text

CASE 2

Slide 33

Slide 33 text

Data Lake Feature engineering Credit score Credit scoring

Slide 34

Slide 34 text

Psycopg Tensorflow Credit scoring

Slide 35

Slide 35 text

Psycopg Tensorflow

Slide 36

Slide 36 text

CASE 3

Slide 37

Slide 37 text

Data Lake Recommendations User and item ratings Recommender systems

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

CASE 4

Slide 40

Slide 40 text

ETL ETL ETL Data Lake Data lake

Slide 41

Slide 41 text

Tableau Data lake

Slide 42

Slide 42 text

CONCLUSIONS

Slide 43

Slide 43 text

Differences • Goals • Responsibilities • Background • Results of work

Slide 44

Slide 44 text

dead_flowers22 roksolana-d roksolanadiachuk roksolanad My contact info

Slide 45

Slide 45 text

Thank you for attention