Upgrade to Pro — share decks privately, control downloads, hide ads and more …

LLMを組み合わせたRAGの実装

Yuto Kimura
January 18, 2024

 LLMを組み合わせたRAGの実装

2024/01/18 に開催された【StudyCo with Momento】LLMに独自知識で回答させる「RAG」の理解を深めようのLT資料です。

Yuto Kimura

January 18, 2024
Tweet

More Decks by Yuto Kimura

Other Decks in Technology

Transcript

  1. 自己紹介 木村 優斗 (X: @biosugar0) 株式会社スマートショッピング SRE 信頼性= 高頻度な価値提供 +

    システムの安定性 というポリシーでサービスの信頼性の維持、向上のために何でもやっ ています。 会社全体の生産性向上がサービスの信頼性を向上させるという理屈 で最近はLLM部を立ち上げて社内活用を模索しています。
  2. 技術スタックと利用イメージ インフラ • AWS Lambda ドキュメントのデータストア • Momento Vector Index

    ドキュメントの保存コード • Python LLM API • OpenAIのGPT-4 • AnthropicのClaude2.1(Amazon Bedrock経 由) RAG実装 • TypeScript • 参照したドキュメントへのリンク付きで回答してくれる • ハルシネーション(幻覚)対策。人間が確認できるように
  3. 事前準備 • LlamaIndex,LangChainを使ってヘルプサイトの内 容を取得し、Momento Vector Indexへの保存を 行う • 様々なローダーがLlamaHubに用意されている •

    弊社はヘルプページにZendeskを使っているので ZendeskReaderが使えた これだけで弊社のヘルプページが全て保存される 

  4. 今回作ったRAGの構成 GPT-4 Claude2.1 • 検索実行の判断と検索クエリ生成用 • 定義したJSON構造を返してくれるFunction Callingが優秀 • 質のいいクエリを生成してくれる

    • インプットの制限: 8K token • gpt-4 turboは128Kだが安定しない(1/14現在) • ドキュメントに沿った回答の生成用 • インプットの制限: 200K token • 大体のドキュメントが入ったプロンプトを使 える
  5. 今回作ったRAGの構成 Momento Vector Index • サーバーレスなベクトルストア • ベクトル化したヘルプサイト全体を事前に保存し、 外部知識をLLMに与えるために利用 •

    検索時にはベクトル化したクエリを用いてベクトル 間の距離メトリクスを計算して関連文書を取得 • 検索にはコサイン類似度を利用。ベクトルの方向 を重視。文書の長さによる影響を比較的受けにく い
  6. 今回作ったRAGの構成 1. ユーザーの質問からGPT-4が検索するかどうかを 判断 2. 検索する場合検索クエリを生成 3. 生成された検索クエリでMomento Vector Index

    に保存されたドキュメントを検索 4. 取得したドキュメントをプロンプトに埋め込み Claude2.1で回答を生成
  7. 精度向上のために: GPT-4 Function Callingプロンプト description:関数自体の説明。弊社のサービス以外の質問に検索が走らないように • 弊社のサービスの概要とそのドキュメントの資料を取得するためのものであることを明 記 • (ヘルプページが日本語なので)日本語の質問に最適化されていることを記載

    parameters.query: 適切な検索クエリを生成するための定義 • 200文字以下のSmartMat Cloudに関連する質問 • 質問例を記載(A3マットで計測できる商品の最大重量は何gですか?) • ユーザーが知りたいことを推察しながら明確で具体的なクエリに書き換えることを指示 • 日本語を使うように再度強調