Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DatabricksによるRAGアーキテクチャー
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Databricks Japan
May 12, 2024
Technology
0
570
DatabricksによるRAGアーキテクチャー
DatabricksによるRAGアーキテクチャーについて説明します。
Databricks Japan
May 12, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
DatabricksホストモデルでAIコーディング環境を構築する
databricksjapan
0
350
[Iceberg Meetup #4] ゼロからはじめる: Apache Icebergとはなにか? / Apache Iceberg for Beginners
databricksjapan
0
610
Microsoft Tech Brief : Microsoft Fabric × Databricks × Microsoft Foundry が切り拓く Agentic Analytics 革命 ― Microsoft Ignite & Databricks 社 主催 DATA+AI World Tour Tokyo 最新アップデート総括
databricksjapan
1
190
Money Forwardにおける Databricks利⽤の現状と今後の展望
databricksjapan
0
130
Databricks Lakeflow クイックワークショップ / lakeflow-workshop
databricksjapan
0
240
NEXT弥⽣を⽀えるAI‧データ基盤構想 とシルバー構築について
databricksjapan
0
72
世界をつなぐ、SEGAのグローバルデータメッシュ 〜Databricksで進化する基盤とゲーム運営〜
databricksjapan
0
200
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
300
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
2
390
Other Decks in Technology
See All in Technology
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
210
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
100
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
2
300
OpenShiftでllm-dを動かそう!
jpishikawa
0
130
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
630
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
Featured
See All Featured
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
69
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
740
Mobile First: as difficult as doing things right
swwweet
225
10k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
4 Signs Your Business is Dying
shpigford
187
22k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
Mosaic AIのデータ中心アプローチ 事前学習モデルの 活用、カスタム モデルの構築 リアルタイムアプリに モデルを提供して監 視 ネイティブツールによ るデータと特徴量の
準備 データプラットフォーム — Delta Lake ガバナンス — Unity Catalog データセット モデル アプリ
©2024 Databricks Inc. — All rights reserved 2 RAGはMosaic AIの一部です
Mosaic AIはすべてのタイプのAIで動作します - 古典的なML、ディープラーニング、RAGを含む生成AI MLOps + LLMOps データとベクトルの準備 ネイティブツールでデータと特徴量を準備 アプリケーションの提供 リアルタイムアプリにモデルを提供して監視 モデルの構築と評価 カスタムモデルのトレーニング、ファインチューニング、事前学習 モデルに対するプロンプトエンジニアリング 構造化データとベクトルデータベースのサービング リアルタイムAPIとしてデータを提供 データとAIのガバナンス – Unity Catalog データプラットフォーム – Delta Lake
©2023 Databricks Inc. — All rights reserved 3 Fine Tuning
Model Serving Pre-training Model Serving Vector Search Model Serving MLflow AI Gateway MLflow Evaluation MLflow Prompt Engg 生成AIアプリケーションにリアルタイムデータを接 続するためにRAGが必要です プロンプト エンジニアリング Retrieval Augmented Generation (RAG) ファイン チューニング 事前トレーニング LLMの挙動をガイドする ための特殊なプロンプトを作 成 LLMと企業データを結合 事前学習LLMを特定の データセット、ドメイン に適合 最初からLLMを トレーニング
©2024 Databricks Inc. — All rights reserved 4 RAGはMosaic AIの一部です
Mosaic AIの機能 (AI) レイクハウスの機能 (Data + AI) Mosaic AIはすべてのタイプのAIで動作します - 古典的なML、ディープラーニング、RAGを含む生成AI MLOps + LLMOps MLflow アセットバンドル (DAB) CI/CDサポート データとベクトルの準備 ネイティブツールでデータと特徴量を準備 SQL ワークフロー Delta Live Tables ノートブック アプリケーションの提供 リアルタイムアプリにモデルを提供して監視 モデル サービング AI Functions SQLからモデル呼出 Lakehouse Apps レイクハウス モニタリング モデルの構築と評価 カスタムモデルのトレーニング、ファインチューニング 事前学習モデルのプロンプトエンジニアリング MLランタイムと ノートブック AutoML Fine Tuning マーケット プレースのモデル MPT LLaMA2 AI Playground MLflow Track & Evaluate データとベクトルの提供 Feature Serving Vector Search Function Serving ガバナンス モデルレジストリ in Unity Catalog Unity Catalog Feature Store in Unity Catalog データプラットフォーム Deltaテーブル 構造化データ ファイル (ボリューム) 非構造化データ
©2024 Databricks Inc. — All rights reserved RAGアプリケーションはリアルタイム、バッチ、 ストリーミングです リアルタイム
例: ポリシーに関する質問に回答する チャットbot バッチ / ストリーミング 例: リスクに関するアンケートが新たに 1万件アップロードされた際に処理 保存データ パイプ ライン Webアプリ Slack / Teams SaaSアプリ SMS RAG アプリ
©2024 Databricks Inc. — All rights reserved 記録 REST API
Databricks内あるいはREST APIによる セキュアな接続 自動 同期 構造化 & 非構造化データ チャットアプリケーション UI/UX、ユーザー認証、セッション管理など モニタリング Databricks によるRAGの デプロイ レイクハウス: ストレージ & ガバナンス モデル データ & ベクトルサービング データ & ベクトル 準備パイプライン RAGチェーン アプリからの質問に反応するために、認証情報の管理、ガバナンス、ロギングを 含むモデルとデータのオーケストレーション
©2024 Databricks Inc. — All rights reserved 記録 REST API
Databricks内あるいはREST APIによる セキュアな接続 自動で 同期 Databricks によるRAGの デプロイ チャットアプリケーション UI/UX、ユーザー認証、セッション管理など 既存アプリ Salesforce、Webポータルなど Lakehouse Apps Databricksがホスト モニタリング レイクハウスモ ニタリング レイクハウス: ストレージ & ガバナンス モデル GenAI Model serving データ & ベクトルサービング Feature Serving Vector Search データ&ベクトルの準備 ワーク フロー Delta Live Tables ワークフロー バッチ/ストリームパイプライン RAGチェーン アプリからの質問に反応するために、認証情報の管理、ガバナンス、ロギングを 含むモデルとデータのオーケストレーション モデルサービング LangChain, Python, … Unity Catalog Deltaテーブル ボリューム Mosaic AIの機能 (AI) Lakehouseの機能 (Data + AI)
©2024 Databricks Inc. — All rights reserved データの準備
©2024 Databricks Inc. — All rights reserved 9 非構造化データの準備 Databricks管理のエンべディングとVector
Search モデルサービング ベクトルDB Vector Search 格納 Delta テーブル 自動で同期 外部モデル カスタムモデル 基盤モデル チャンク & 特徴量 Databricksが エンべディング を計算 モデル 任意のオープン、プロプライエタリのモデル MPT LLaMA2 外部 ソース 取り込み テーブル ボリューム ファイル & メタデータ 文書の処理 1. 解析 2. クレンジング 3. チャンク作成 4. 特徴量生成 ワークフロー Delta Live Tables ノートブック
©2024 Databricks Inc. — All rights reserved 10 非構造化データの準備 顧客管理のエンべディングとVector
Search モデルサービング 外部モデル カスタムモデル 基盤モデル 外部 ソース 取り込み Tables Volumes ファイル & メタデータ 文書の処理 1. 解析 2. クレンジング 3. チャンク作成 4. 特徴量生成 チャンク & 特徴量 ワークフロー Delta Live Tables ノートブック モデル 任意のオープン、プロプライエタリのモデル MPT LLaMA2 ベクトルDB Vector Search 格納 Delta テーブル 自動 同期 エンべ ディング ご自身で エンべディング を計算して格納 ワークフロー Delta Live Tables ノートブック チャンク ベクトル 特徴量
©2024 Databricks Inc. — All rights reserved 11 構造化データの準備 サービング
Feature Serving 格納 外部 ソース 取り込み Deltaテーブル Deltaテーブル 自動同期 行 特徴量 エンジニア リング 特徴量 ワークフロー Delta Live Tables ノートブック オンライン テーブル Feature Servingとオンラインテーブル
©2024 Databricks Inc. — All rights reserved チェーンの構築と提供
©2024 Databricks Inc. — All rights reserved 13 モデルサービング データサービング
チェーンのロジック RAGアーキテクチャ: チェーン モデルサービング 質問 クエリー 処理 クエリー 展開 リトリーバ プロンプト エンジニア リング 生成 応答 外部モデル カスタムモデル 基盤モデル Feature Serving Vector Search 後処理 Unity Catalog Deltaテーブル 記録 モニタリング レイクハウスモ ニタリング 🦜🔗
©2024 Databricks Inc. — All rights reserved アプリケーション モニタリング Databricks
によるRAGの デプロイ レイクハウス: ストレージ & ガバナンス モデル データ & ベクトル サービング データ&ベクトル 準備パイプライン RAGチェーン