Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Visualization Grammar
Search
Eitan Lees
March 03, 2020
Programming
9
930
Visualization Grammar
A brief tour of the Vega/Vega-Lite visualization grammar used in Altair
Eitan Lees
March 03, 2020
Tweet
Share
More Decks by Eitan Lees
See All by Eitan Lees
Visualization
eitanlees
150
17k
Matplotlib
eitanlees
8
1.1k
Altair Tutorial
eitanlees
4
1k
Scientific Visualization
eitanlees
6
800
Other Decks in Programming
See All in Programming
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
170
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
590
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
2.4k
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
200
Implementation Patterns
denyspoltorak
0
280
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
AI巻き込み型コードレビューのススメ
nealle
0
120
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
300
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
170
dchart: charts from deck markup
ajstarks
3
990
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
Featured
See All Featured
Game over? The fight for quality and originality in the time of robots
wayneb77
1
110
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
My Coaching Mixtape
mlcsv
0
46
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
250
Mind Mapping
helmedeiros
PRO
0
78
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
KATA
mclloyd
PRO
34
15k
HDC tutorial
michielstock
1
360
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
930
Un-Boring Meetings
codingconduct
0
200
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
Data Mark Encoding Transform Scale Guide Visualization Grammar
Data Mark Encoding Transform Scale Guide A B C &
Variables Observations Tabular Data A B C
Data Mark Encoding Transform Scale Guide A,B,C,D,E 4,6,4,4,3 4,4,8,4,3 7,5,5,0,1
5,9,3,0,5 0,1,2,4,2 [ { "A":4, "B":6, "C":4, "D":4, "E":3 }, { "A":4, "B":4, "C":8, "D":4, "E":3 }, { "A":7, "B":5, "C":5, "D":0, "E":1 }, { "A":5, "B":9, "C":3, "D":0, "E":5 }, { "A":0, "B":1, "C":2, "D":4, "E":2 } ] https://eitanlees.com/ABC.csv
Data Mark Encoding Transform Scale Guide B A A A
C C C B B and many more ... Text Circle Bar Line
Data Mark Encoding Transform Scale Guide X Position Y Position
Size Color ⠇ Channel A B C D ⠇ Variable
Data Mark Encoding Transform Scale Guide Calculate Fold Filter Aggregate
and many more ...
Data Mark Encoding Transform Scale Guide f(domain) → range
Data Mark Encoding Transform Scale Guide A B C Legend
Data Mark Encoding Transform Scale Guide Let’s make a chart
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() sepalLength sepalWidth PetalLength PetalWidth species 5.1 3.5 1.4 0.2 setosa 4.9 3.0 1.4 0.2 setosa 4.7 3.2 1.3 0.2 setosa 4.6 3.1 1.5 0.2 setosa ⠇
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle()
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle() Without an encoding our chart is not very interesting
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth') )
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide Note that the guides and scales are automatically generated for us
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ).transform_filter( alt.datum.sepalWidth < 3 ) Scale Guide