Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
why is academic writing important for us
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Sho Yokoi
PRO
October 26, 2017
Research
3
4.5k
why is academic writing important for us
2017-10-26, 研究室内勉強会資料
(1) なぜライティングスキルは重要なのか
(2) 論文投稿先に関する基礎知識
Sho Yokoi
PRO
October 26, 2017
Tweet
Share
More Decks by Sho Yokoi
See All by Sho Yokoi
Language Models Are Implicitly Continuous
eumesy
PRO
0
390
言語モデルの内部機序:解析と解釈
eumesy
PRO
79
25k
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
12
4.6k
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
10
2.3k
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.9k
「確率的なオウム」にできること、またそれがなぜできるのかについて
eumesy
PRO
8
4.4k
A Theory of Emergent In-Context Learning as Implicit Structure Induction
eumesy
PRO
5
1.7k
ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送
eumesy
PRO
25
18k
Revisiting Over-smoothing in BERT from the Perspective of Graph
eumesy
PRO
0
1.5k
Other Decks in Research
See All in Research
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.5k
Grounding Text Complexity Control in Defined Linguistic Difficulty [Keynote@*SEM2025]
yukiar
0
110
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
320
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
2025-11-21-DA-10th-satellite
yegusa
0
110
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
140
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
350
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
2026.01ウェビナー資料
elith
0
220
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
8k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Rails Girls Zürich Keynote
gr2m
96
14k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
30 Presentation Tips
portentint
PRO
1
220
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
190
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
Transcript
Why is Writing Important ݚڀͱษڧͷϧʔϧͷҧ͍ɼ͓Αͼจߘઌʹؔ͢Δجૅࣝ Research Skills ษڧձ #1; October
26th, 2017 ౦େֶ סݚڀࣨ ԣҪ (D1) 1
1. ͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ 2
ษڧͱݚڀతධՁͷํ๏ҟͳΔ • ษڧɿطͷݟͷशಘ͕తɽࢼݧϨϙʔτΛ௨ͯ͠ɼֶ शऀͷशख़ΛධՁɾݕূɽ • ݚڀɿਓྨʹͱͬͯະͷࣄ࣮ͷൃݟ͕తɽࠪಡͱҾ༻Λ௨ ͯ͠ɼओுʢจʣͷଥੑॏཁੑΛධՁɾݕূɽ → ݚڀ׆ಈͷ࣮ફతˍظతͳඪɼݚڀ݁ՌΛจʹ·ͱ ΊͯɼࠪಡΛύε͢Δ͜ͱɽݚڀࣨଐ͔Β1ʙ2ͰͨͲΓண
͖͍ͨɽ 3
ͳͥࠪಡ͢Δͷ͔ɼͳͥҾ༻͢Δͷ͔ ਓྨશମͰֶΛલਐͤ͞Δํ๏ৗʹΞοϓσʔτ͞Ε͖ͯ ͨɽݱࡏࠪಡͱҾ༻ʹΑͬͯݚڀͷ࣭Λ୲อ͢Δํ๏͕ओྲྀɽ • Peer ReviewʢࠪಡʣɿݚڀՌʢจʣͷॏཁੑ৽نੑΛ ઐՈಉ࢜Ͱ૬ޓݕূʢࠪಡʣ͢ΔɽࠪಡΛύεͨ͠จ͕ग़ ൛͞Εɼଞऀ͔ΒࢀরͰ͖Δঢ়ଶʹͳΔɽˡ ࠓճͷείʔϓ •
CitationʢҾ༻ʣɿઌߦݚڀΛ౿·͑ɼݞʹΓʢҾ༻͠ʣɼ ݟΛ͞ΒʹਐΊΔɽ·ͨҾ༻ʹΑΓઌߦݚڀܟҙΛࣔ͢ɽ 4
ࠪಡͰνΣοΫ͞ΕΔ߲ • ݚڀͷ༰ʹؔΘΔ߲ Noveltyʢ৽نੑʣɼOriginalityʢಠੑʣɿ৽͠͞ SignificanceʢॏཁੑʣɼRelevanceʢؔ࿈ੑʣɿॏཁ͞ Correctnessʢਖ਼ੑʣɼSoundnessʢଥੑʣɿٞͷଥ͞ • จͷॻ͖ํʹؔΘΔ߲ ← ॻ͖ํۃΊͯॏཁ
ClarityɼPresentationɿهड़ͷ໌ղ͞ɼٞͷ͍͢͞ Repeatabilityɿ࠶ݱੑʢʹಡΈख͕ࢼՄೳ͔ʣ 5
·ͱΊɿͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ • ݚڀ׆ಈʢਓྨͷΛલਐͤ͞Δ׆ಈʣͷεϞʔϧΰʔϧݚ ڀՌΛࠪಡ͖จͱͯ͠ग़൛͢Δ͜ͱɽ • ࠪಡͰจͷॻ͖ํ͕νΣοΫ͞ΕΔʢʹΑ͘ॻ͚͍ͯΔ จʹՁ͕͋Δʣɽ • →ʮจͷॻ͖ํʯॏཁɽ •
·ͨจͷ໌ղ͞Λ্ͤ͞ΔաఔͰɼݚڀࣗମ͕લਐ͢Δɽ 6
2. จߘઌʹؔ͢Δجૅࣝ 7
ߘઌ จͷߘઌʹଟ͘ͷબࢶ͕͋Δɽ • ࠪಡɿࠪಡͷ༗ແ • ഔମɿจࢽɼձٞͷ༧ߘूɼϫʔΫγϣοϓͷ༧ߘू • ݴޠɿӳޠʢࠃࡍࢽɼձٞʣʀຊޠʢࠃࢽɼձٞʣ • Tierɿܝࡌจͷ࣭ɼࠪಡͷݫ͠͞
8
ࠪಡ • ࠪಡͷ༗ແɿجຊతʹࠪಡ͖จͷΈ͕Ҿ༻ͷରͱͳΔɽ ݴ͍͑Εɼࠪಡͳ͠ͷจʢྫ͑ࠃձٞͷ༧ߘʣҾ ༻ͷରͱͳΒͳ͍ɽ • ಗ໊ੑɿެਖ਼ੑͷͨΊɼDouble-blindʢೋॏݕʀஶऀͱࠪಡ ऀ͕͓ޓ͍ΛΒͳ͍ʣ Single-blindʢยଆݕʀஶऀଆͩ ͚ࠪಡऀΛΒͳ͍ʣͰࠪಡ͞ΕΔ͜ͱ͕ଟ͍ɽզʑ͕ߘ
͢Δจࢽࠃࡍձٞ΄ͱΜͲ double-blind peer reviewɽ 9
ഔମ • Journal Articleʢݪஶจʣɿ௨ৗจࢽʹ࠾͞Εͨจ ͕ݪஶจʢҰ࣍ࢿྉʣͱݟͳ͞ΕҾ༻ͷରͱͳΔɽ·ͨ ͬͱॏཁͳۀͱͳΔɽࠪಡϲ݄͔Βఔɽ • Proceedings Paperʢձٞ༧ߘʣɿଟ͘ͷʹ͓͍ͯձٞڝ ૪తͰͳ࣭͘୲อ͞Ε͓ͯΒͣۀʹͳΒͳ͍ɽ͔͠͠
ਝͳࠪಡΛॏΜ͡ΔܭࢉػՊֶͷҰ෦Ͱࠃࡍձٞڝ૪త ͔ͭ࠷ॏཁࢹ͞ΕΔɽNLPಛʹݦஶɽࠪಡ1ʙ2ϲ݄ఔɽ 10
ഔମ • Preprintɿग़൛લͷݪߘΛެ։͢ΔαʔϏεʢPreprint serverʀ యܕతʹ arXivʣ͕ۙΜʹΘΕ͍ͯΔɽૣΊͷެ։Ͱ ৽نੑΛओுͰ͖ɼ·ͨۀքશମͷݚڀαΠΫϧૣ·Δɽ ※ ࣭୲อ͞Εͣۄੴࠞ߹ɽʢҾ༻ʹΑΔ୲อՄೳʣ ※
Double-blind Ͱͷࠪಡ͕࣮࣭తʹෆՄೳʹͳΔ͋Δɽ ACLίϛϡχςΟɼߘ1ϲ݄લҎޙʹϓϨϓϦϯτΛެ։ࡁ ͷจΛෆ࠾ʹ͢Δࢫએݴɽ 11
ݴޠ • զʑͷۀքͰɼجຊతʹӳޠͰॻ͔ΕͨจͷΈ͕Ҿ༻ͷର ͱͳΔɽ • ͨͩ͠ࠃจࢽɾࠃձٞͷߘʹɼۀҎ֎ʹଟ͘ͷ Ձ͕͋Δɽ ✔ จͷܗʹ·ͱΊɼ·ͨଞେֶଞݚڀػؔͷݚڀऀ͔Βί ϝϯτΛΒ͏͜ͱͰɼݚڀΛਐΊΔྑ͍ػձʹͳΔɽ
✔ ࠃͷϓϨʔϠʔʢಛʹඇݚڀऀʣͷ༗༻ͳࢀরઌʹͳΔɽ 12
Tier • ࠪಡ͕ڝ૪తͰ࠾จͷ࣭͕ߴ͍ഔମͱͦ͏Ͱͳ͍ͷ͕͋ Δɽ׳ྫతʹڝ૪తͳॱʹTop (1st) Tier, 2nd Tier, ͱΑͿɽ •
Top Tier ͷจࢽɾձٞɼࠪಡऀͱͯ͠ۀܦݧͷ͋Δݚ ڀऀׂ͕ΓͯΒΕΔ͜ͱ͕ଟ͘ɼࠪಡίϝϯτ༗ӹɽ → ͳΔ͘ྑ͍ձٞʹग़͠·͠ΐ͏ɽ • ಡΈखͱͯ͠ Tier ͷߴ͍จࢽɾձ͔ٞΒαʔϕΠ͢Δͷ͕ ޮతɽ 13
ܭࢉػՊֶͷࠃࡍձٞͷྫ NLP AI ML; DM; ΄͔ 1st Tier पล͔Β ࢀর͞ΕΔ
ACL, EMNLP, NAACL AAAI, IJCAI NIPS, ICML; KDD, WSDM; WWW, SIGIR, CVPR, InterSpeech 2nd Tier ͔֘Β ࢀর͞ΕΔ EACL, COLING, IJCNLP, CoNLL UAI, ECAI AISTATS, ICLR; ICDM, ECMLPKDD, CIKM 14
Long Paper, Short Paper ࠃࡍձٞɼLong Paperʢ6ʙ8ϖʔδఔʣͱ Short Paperʢ4ʙ6ϖʔδఔʣΛબΔέʔε͕͋Δɽ • ҰൠʹɼLong
Paper ʹ࣮ݧߟͳͲ͕ेʹἧͬͨݚڀ ΛɼShort Paper ʹΞΠσΞҰൃ࣮ݧ͕ݶఆ͞ΕͨݚڀΛ ߘ͢Δɼͱ͞Ε͍ͯΔɽ • ҰൠʹɼLong Paper ͷํ͕ڝ૪తͰ࠾จͷߴ͍ɽ 15
Oral Presentation, Poster Presentation ࠃࡍձٞʹจ͕࠾͞ΕΔͱɼձٞͰݚڀͷ༰Λൃද͢Δػ ձ͕༩͑ΒΕΔɽൃදଟ͘ͷ߹ٛɽ • ൃදͷܗଶʹ Oral Presentationʢޱ಄ൃදʣͱ
Poster Presentationʢϙελʔൃදʣ͕͋ΔɽҰൠʹɼ࠾จͷൃ දͷܗଶओ࠵ऀଆ͔Βࢦࣔ͞ΕΔɽ • Ұൠʹɼจͷ࣭͕ߴ͘ଟ͘ͷௌऺ͕ظ͞ΕΔݚڀ͕ Oral Presentation ʹׂΓͯΒΕΔɽ 16
NLPʹ͓͚ΔΑ͋͘Δߘॱ 1. ࠃձٞɿຊޠɼࠪಡͳ͠ɽۀʹͳΒͳ͍ɽจԽͷػ ձɼଞݚڀऀͱٞ͢ΔػձʹɽݴޠॲཧֶձɼNLݚͳͲɽ ࠃࡍձٞซઃϫʔΫγϣοϓಉ༷ͷϝϦοτ͕͋Γɼਪɽ 2. ࠃࡍձٞɿӳޠɼࠪಡ͋Γɽ͕͜͜ओઓɽNLP12݄͔Β4 ݄ࠒ͕ߘγʔζϯɼ6݄͔Β9݄ࠒ͕ձٞγʔζϯɽ 3. จࢽɿΞΧσϛοΫͳจ຺ͰධՁΛड͚ΔࡍʹॏཁɽTACL
࠾͞ΕΔͱACL/EMNLP/NAACLͰൃදՄɽ 17
3. ࠓޙͷ Research Skills ษڧձ ΑΓΑ͘ॻ͚ΔΑ͏ʹͳΔͨΊʹ 18
ษڧձͷείʔϓ είʔϓ είʔϓ֎ Α͍ॻ͖͔ͨΛֶͿ Α͍ςʔϚઃఆΛֶͿ How to say What to
say ୡՄೳͳٕज़ ͓ؾ࣋ͪɼҙ 19
ษڧձͰѻ͏ςʔϚ • πʔϧͷ͍ํɿLaTeX ͷ Tips ؚΊͨࣥචڥɼϊϋ ɼKWIC ͷपลπʔϧ • ӳޠͷॻ͖ํɿจతɾ׳ྫతͳݴ͍ճ͠ɼΑ͋͘Δؒҧ͍
• Α͍ߏʹ͢ΔͨΊͷํ๏ɿoutline-driven writing • ΄͔ɿ༗ӹࢿྉͷڞ༗ɼ૬ޓࠪಡɼͳͲ 20