Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MongoDB for Analytics
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
John Nunemaker
PRO
May 04, 2012
Programming
21
2.3k
MongoDB for Analytics
Presented at MongoSF on May 4th, 2012.
John Nunemaker
PRO
May 04, 2012
Tweet
Share
More Decks by John Nunemaker
See All by John Nunemaker
AI: The stuff that nobody shows you
jnunemaker
PRO
2
250
Atom
jnunemaker
PRO
10
4.5k
MongoDB for Analytics
jnunemaker
PRO
11
1k
Addicted to Stable
jnunemaker
PRO
32
2.8k
MongoDB for Analytics
jnunemaker
PRO
16
30k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Why NoSQL?
jnunemaker
PRO
10
980
Don't Repeat Yourself, Repeat Others
jnunemaker
PRO
7
3.5k
I Have No Talent
jnunemaker
PRO
14
1k
Other Decks in Programming
See All in Programming
高速開発のためのコード整理術
sutetotanuki
1
400
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
300
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
210
Architectural Extensions
denyspoltorak
0
280
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
Patterns of Patterns
denyspoltorak
0
1.4k
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
730
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
180
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
Featured
See All Featured
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Building Adaptive Systems
keathley
44
2.9k
Context Engineering - Making Every Token Count
addyosmani
9
650
Testing 201, or: Great Expectations
jmmastey
46
8k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
120
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Balancing Empowerment & Direction
lara
5
890
Transcript
GitHub John Nunemaker MongoSF 2012 May 4, 2012 MongoDB for
Analytics A loving conversation with @jnunemaker
None
Background How hernias can be good for you
None
None
1 month Of evenings and weekends
1 year Since public launch
13 tiny servers 2 web, 6 app, 3 db, 2
queue
7-8 Million Page views per day
None
None
None
None
Implementation Imma show you how we do what we do
baby
Doing It (mostly) Live No aggregate querying
None
None
get('/track.gif') do track_service.record(...) TrackGif end
class TrackService def record(attrs) message = MessagePack.pack(attrs) @client.set(@queue, message) end
end
class TrackProcessor def run loop { process } end def
process record @client.get(@queue) end def record(message) attrs = MessagePack.unpack(message) Hit.record(attrs) end end
http://bit.ly/rt-kestrel
class Hit def record site.atomic_update(site_updates) Resolution.record(self) Technology.record(self) Location.record(self) Referrer.record(self) Content.record(self)
Search.record(self) Notification.record(self) View.record(self) end end
class Resolution def record(hit) query = {'_id' => "..."} update
= {'$inc' => {}} update['$inc']["sx.#{hit.screenx}"] = 1 update['$inc']["bx.#{hit.browserx}"] = 1 update['$inc']["by.#{hit.browsery}"] = 1 collection(hit.created_on) .update(query, update, :upsert => true) end end end
Pros
Pros Space
Pros Space RAM
Pros Space RAM Reads
Pros Space RAM Reads Live
Cons
Cons Writes
Cons Writes Constraints
Cons Writes Constraints More Forethought
Cons Writes Constraints More Forethought No raw data
http://bit.ly/rt-counters http://bit.ly/rt-counters2
Time Frame Minute, hour, month, day, year, forever?
# of Variations One document vs many
Single Document Per Time Frame
None
{ "t" => 336381, "u" => 158951, "2011" => {
"02" => { "18" => { "t" => 9, "u" => 6 } } } }
{ '$inc' => { 't' => 1, 'u' => 1,
'2011.02.18.t' => 1, '2011.02.18.u' => 1, } }
Single Document For all ranges in time frame
None
{ "_id" =>"...:10", "bx" => { "320" => 85, "480"
=> 318, "800" => 1938, "1024" => 5033, "1280" => 6288, "1440" => 2323, "1600" => 3817, "2000" => 137 }, "by" => { "480" => 2205, "600" => 7359,
"600" => 7359, "768" => 4515, "900" => 3833, "1024"
=> 2026 }, "sx" => { "320" => 191, "480" => 179, "800" => 195, "1024" => 1059, "1280" => 5861, "1440" => 3533, "1600" => 7675, "2000" => 1279 } }
{ '$inc' => { 'sx.1440' => 1, 'bx.1280' => 1,
'by.768' => 1, } }
Many Documents Search terms, content, referrers...
None
[ { "_id" => "<oid>:<hash>", "t" => "ruby class variables",
"sid" => BSON::ObjectId('<oid>'), "v" => 352 }, { "_id" => "<oid>:<hash>", "t" => "ruby unless", "sid" => BSON::ObjectId('<oid>'), "v" => 347 }, ]
Writes {'_id' => "#{sid}:#{hash}"}
Reads [['sid', 1], ['v', -1]]
Growth Don’t say shard, don’t say shard...
Partition Hot Data Currently using collections for time frames
Bigger, Faster Server More CPU, RAM, Disk Space
Users Sites Content Referrers Terms Engines Resolutions Locations Users Sites
Content Referrers Terms Engines Resolutions Locations
Partition by Function Spread writes across a few servers
Users Sites Content Referrers Terms Engines Resolutions Locations
Partition by Server Spread writes across a ton of servers,
way down the road, not worried yet
GitHub Thank you!
[email protected]
John Nunemaker MongoSF 2012 May 4,
2012 @jnunemaker