Upgrade to Pro — share decks privately, control downloads, hide ads and more …

【潔能講堂】 氫能應用的安全規範

learnenergy2
November 12, 2023

【潔能講堂】 氫能應用的安全規範

learnenergy2

November 12, 2023
Tweet

More Decks by learnenergy2

Other Decks in Education

Transcript

  1. © ITRI. 工業技術研究院著作 Why Hydrogen? The Way to Net Zero

    by 2050 2 Source: Net Zero by 2050. A Roadmap for the Global Energy Sector, IEA Sector Efficiency Electrification Hydrogen+ Renwables CCUS
  2. © ITRI. 工業技術研究院著作 Global hydrogen demand in the Net Zero

    Scenario, 2020-2030 3 Production technology Sector Source: https://www.iea.org/reports/hydrogen Mt Mt
  3. © ITRI. 工業技術研究院著作 英國低碳與氫能相關策略 • 2020/11/18 英國首相宣布「綠色工業革命十項計劃」 – 該計畫涵蓋清潔能源、運輸、自然和創新技術,將使英國在2050年達到對抗氣候變遷的目 標。其中氫能的目標:與工業界合作,以期到2030年實現5GW的低碳氫生產能力,用於工

    業、交通、電力和家庭,並在本世紀末發展出第一個完全由氫加熱的城鎮。 • 2021/8/17 英國宣布推動具低碳排放性質的氫產業策略 – 概述支持多種技術,如透過電解技術產生之綠氫,以及透過碳捕捉技術的藍氫。 – 與產業合作制定英國低碳氫氣的標準,使英國生產的氫氣確實與淨零目標一致,同時支持 國內氫氣生產佈局。 – 支持必要基礎建設發展,如碳捕捉和封存設施。 – 與產業合作研究將20%的氫氣混入現供應的氣體之安全性、可行性及成本效益等。估計可 減少7 %的天然氣碳排放量。 5
  4. © ITRI. 工業技術研究院著作 英國達到2030氫經濟目標的策略圖 1. Scale up 2. Hydrogen production

    3. Hydrogen networks and storage 4. Use of hydrogen Source: UK Hydrogen Strategy.pdf 6
  5. © ITRI. 工業技術研究院著作 六個氫能計量上需優先重視與克服的挑戰 1. 燃料電池和電解槽的材料開發:商業化的關鍵是降低成本和評估關鍵降 解機制,以延長使用壽命和耐用性。 2. 氫氣中添加嗅味劑以幫助洩漏檢測的影響評估:在管道運輸和最終應用 的洩漏檢測上,需建立與提供不會影響燃料電池使用壽命與耐用性的量

    測技術。 [安全] 3. 氫氣與天然氣在供氣網中的混合比例確定:需要準確的流量計量及經過 驗證的計量方法,以確保交易公平性。 4. 氫氣燃燒特性的量測:包括火焰檢測、傳播、溫度和氮氧化物 (NOx) 排放量測,並確保現有和新設備可適用於氫氣的使用環境。 5. 評估現有氣體基礎設施和材料對氫氣運輸的適用性:了解可能需要進行 哪些調整以避免像是空氣滲透、金屬脆化和氫洩漏等問題。 [安全] 6. 儲氫驗證技術:需要量測氫氣在生產、運輸、儲存等階段的特性量測技 術,包括計量、洩漏檢測和純度分析,以確保這些技術針對氫氣儲存進 行最佳化。 [安全] Source: Energy transition: Measurement needs within the hydrogen industry.pdf, NPL 7
  6. © ITRI. 工業技術研究院著作 歐洲混氫體積比例規範要求及示範驗證現況說明 Source:The role of Hydrogen and Fuel

    Cells in the Future Energy Systems, H2FC Supergen, March 2017 歐洲各國法規要求混氫體積比例皆在12 %以下,美國英國為0.1 %。 歐洲示範驗證專案目前最多為德國的30 %。 8
  7. © ITRI. 工業技術研究院著作 Safety Aspects of Hydrogen Fuelling Stations -1

    9 • On-site hydrogen production unit (PEM electrolyzer); • Hydrogen delivery system; • Compressors; • Storage; • Piping connections (non-welded); • Dispensers. CONTAINER 1: PEM electrolyzer Chiller with dispenser CONTAINER 2:Compression and storage of H2 High pressure Storage Low pressure Storage Low pressure Compressor High pressure Compressor Source: Veres J., Ochodek T., Kolonicny J., 2022, Safety Aspects of Hydrogen Fuelling Stations, Chemical Engineering Transactions, 91, 49-54 DOI:10.3303/CET2291009
  8. © ITRI. 工業技術研究院著作 Safety Aspects of Hydrogen Fuelling Stations -2

    Source: Veres J., Ochodek T., Kolonicny J., 2022, Safety Aspects of Hydrogen Fuelling Stations, Chemical Engineering Transactions, 91, 49-54 DOI:10.3303/CET2291009 Field Characteristics values Mark Hydrogen CAS number 1333-74-0 Chemical formula H2 Density 0,084 kg/m3 Boiling point -253°C Melting point -259°C Auto-ignition temperature 560°C Explosion range (4.7-77) vol% • Risk of burning, ignition, explosion, • Risk of overpressure, • Low temperature risk, • Hydrogen embrittlement, • The action of hydrogen on the human body through direct contact or exposure. 10
  9. © ITRI. 工業技術研究院著作 Hydrogen Standardization Organization • ISO TC 197

    Technical Committee of Hydrogen Technologies – standardization in the field of systems and devices for the production, storage, transport, measurement and use of hydrogen [3]. – Technical Committee of Surface coatings (ISO/TC 2/SC 4), – Methods of testing (ISO/TC 17/SC 7), – Copper and copper alloys (ISO/TC 26), – Gas cylinders (ISO/TC 58), – Corrosion of metals and alloys (ISO/TC 156) are specialized in preparing standards for hydrogen embrittlement. • IEC TC105 Fuel cell technologies – For all FC types and various associated applications, such as stationary FC power systems 11
  10. © ITRI. 工業技術研究院著作 Hydrogen Standardization Organization • American organizations (are

    all specialized in preparing standards for hydrogen storage and transportation) – American National Standards Institute (ANSI) – Compressed Gas Association (CGA) – National Fire Protection Association (NFPA) – American Society of Mechanical Engineers (ASME) • European Committee for Standardization (CEN) – CEN/TC 23 (Transportable gas cylinders) covers standardization of transportable gas cylinders, their fittings, and requirements relating to their design, – CEN/TC 133 (Copper and copper alloys), CEN/TC 185 (Fasteners), CEN/TC 262 (Metallic and other inorganic coatings, including for corrosion protection and corrosion testing of metals and alloys), and CEN/TC 459/SC 1 (Test methods for steel (other than chemical analysis)) are technical bodies which prepare standards for hydrogen embrittlement. • JISC The Japanese Industrial Standards Committee – covering a wide range of products and technologies 12
  11. © ITRI. 工業技術研究院著作 Timeline of code and standards development and

    code and standards hireachy Fire and building codes Hydrogen- specific codes Example: NFPA 2 Component standards and equipment design codes Example: CGA G-5.5 or ASME B31.12 Source: Hydrogen Technologies Safety Guide C. Rivkin, R. Burgess, and W. Buttner National Renewable Energy Laboratory 13
  12. © ITRI. 工業技術研究院著作 Overview of Regulations, Codes, and Standards Related

    to Hydrogen Infrastructure Safety 14 Federal Regulations OSHA Regulations 29 CFR 1910 Subpart H Safe storage, use, and handling of hydrogen in the workplace DOT Regulations 49 CFR 171-179 Safe transport of hydrogen in commerce U.S. National Codes International Building Code (IBC) General construction requirements for building based on occupancy class International Fire Code (IFC)/NFPA 1 Uniform Fire Code Requirements for hydrogen fueling stations, flammable gas, and cryogenic fluid storage International Mechanical Code (IMC) Requirements for ventilation for hydrogen usage in indoor locations International Fuel Gas Code (IFGC) Requirements for flammable gas piping Hydrogen Technologies Specific Fire Codes and Standards NFPA 2 Hydrogen Technologies Code Comprehensive code for hydrogen technologies constructed of extract material from documents such as NFPA 55 and 853 and original material NFPA 55 Compressed Gas and Cryogenic Fluids Code Comprehensive gas safety code that addresses flammable gases as a class of hazardous materials and also contains hydrogen-specific requirements NFPA 853 Standard for the Installation of Stationary Fuel Cell Power Systems Covers installation of all commercial fuel cells including hydrogen PEM fuel cells Hydrogen Technologies Component, Performance, and Installation Standards ASME B31.3 and B31.12 Piping and Pipelines Piping design and installation codes that also cover material selection ASME Boiler and Pressure Vessel (BPV) Code Addresses design of steel alloy and composite pressure vessels CGA S series Addresses requirements for pressure relief devices for containers CGA H Series Components and systems UL 2075 Sensors CSA H series of hydrogen component standards CSA FC1 Stationary fuel cells SAE J2601/SAE J2600 Dispensing and dispenser nozzles Source: Hydrogen Technologies Safety Guide C. Rivkin, R. Burgess, and W. Buttner National Renewable Energy Laboratory
  13. © ITRI. 工業技術研究院著作 Overview of Hydrogen Standards (By Function) H2

    Generation Hydrogen Generator :safety ISO 16110-1:2007 Hydrogen Generator: water electrolysis ISO 22734:2019 Hydrogen separation & purification ISO/TS 19883:2017 Hydrogen Generator: Grid services ISO/TR 22734-2 H2 Distribution & Storage Stationary Containers, Cylinders and Tanks NFPA 2 & NFPA 55 Pipeline ASME B31 series & B31.12 Hydrogen detection apparatus ISO 26142:2010 GH2-Cylinders & tubes for stationary storage. ISO 19884 H2 Quality H2 Fuel Quality ISO 14687:2019 H2 Fuel Quality- PEM FC EN 17124:2018 H2 Fuel Quality for FC SAE J2719B:2020 H2 fuel analysis for PEM FC of road vehicles ISO 21087:2019 H2 Fueling Light-duty vehicle SAE J2601:2020 Heavy-duty vehicle SAE J2601/2:2014 Fork-lift vehicle SAE J2601/3:2013 Filling protocols EN 17127:2020 Design of protocol ISO 19885-1 Vehicle & HRS ISO 19885-2/ -3 HRS connection device ISO 17268:2020 H2 Fueling Station General ISO 19880-1:2020 Valve ISO 19880-3:2020 Wire and Hose ISO 19880-5:2020 Fuel Quality ISO 19880-8:2019 Sampling ISO 19880-9 Fittings ISO 19880-6 HDTA CSA HGV 4.3 FC Vehicle TPRD ISO 19882:2018 Fuel Container ISO 19881:2018 System components ISO 19887 Vehicle Inspection UN ECE R134 UN ECE R140 15 Note: published standards noted in black, and draft standards in red
  14. © ITRI. 工業技術研究院著作 都市瓦斯或天然氣 煉油廠或化學產業 副產氫 加氫機: • ISO 19880-3閥件

    • ISO 19880-5軟管及其組合 • ISO 19880-6 配件 • ISO 17268 連接裝置 • SAE J2601系列 加氫協定 • SAE J2799通訊硬體及軟體 • CSA HGV 4.3 HSTD • CSA HGV ˋ4.4 拉斷裝置 • ISO 22734 水電解 • ISO 16110-1重組製氫 • ISO 19883 PSA純化 定置儲氫: • ISO 19884(制定中) • 公共危險物品及可燃性高壓氣 體製造儲存處理場所設置標準 暨安全管理辦法 壓縮機: • CSA HGV 4.8 • ISO 19880-4 (ISO/TC197 WG21規劃中) 預冷設備: • 勞工安全衛法(壓力設備) 車載運輸氫氣: • 高壓氣體勞工安全規則 現場 製氫 加氫站: • ISO 19880-1一般要求 • ISO 19880-8 氫氣品質 • ISO 14687 氫氣品質標準 車載儲氫裝置: • ISO 19881儲氫桶 • ISO 19883 TPRD • ISO 17268連接裝置 • SAE J2601系列 加氫協定 • SAE J2799通訊硬體及軟體 On-site Off-site • ASME B31.12氫氣配管 • ISO 21087 氫氣分析法 • 經營公共危險物品及高壓氣體 各類事業之分類及安全管理辦法 • ISO 26142 氫氣偵測裝置-定置型 氫氣相關標準(以加氫站場域為例) 資料來源:2022工研院氫能應用研究計畫 16
  15. © ITRI. 工業技術研究院著作 Overview of Hydrogen standards Power generation and

    mobility 18 資料來源:2022工研院氫能應用研究計畫
  16. © ITRI. 工業技術研究院著作 Hydrogen Standards (for hydrogen storage materials) •

    JIS H 7003:2007, Glossary of terms used in hydrogen absorbing alloys • JIS H 7201:2007, Method for measurement of pressure-composition- temperature(PCT) relations of hydrogen absorbing alloys • JIS H 7202:2007, Method for measurement of hydrogen absorption/desorption reaction rate of hydrogen absorbing alloys • JIS H 7203:2007, Method for measurement of hydrogen absorption/desorption cycle characteristic of hydrogen absorbing alloys • JIS H 7204:1995, Method for measuring the heat of hydrating reaction of hydrogen absorbing alloys 19
  17. © ITRI. 工業技術研究院著作 Hydrogen Standards (for hydrogen storage materials) •

    ISO 2626:1973 Copper - Hydrogen embrittlement test • ISO/TR 20491:2019 Fasteners - Fundamentals of hydrogen embrittlement in steel fasteners • ISO 15330:1999 Fasteners - Preloading test for the detection of hydrogen embrittlement - parallel bearing surface method • ISO 16573:2015 Steel - Measurement method for the evaluation of hydrogen embrittlement resistance of high strength steels • ISO 9587:2007 Metallic and other inorganic coatings - Pretreatment of iron or steel to reduce the risk of hydrogen embrittlement • ISO 9588:2007 Metallic and other inorganic coatings - Post-coating treatments of iron or steel to reduce the risk of hydrogen embrittlement • ISO 7539-11:2013 Corrosion of metals and alloys - Stress corrosion testing - Part 11: Guidelines for testing the resistance of metals and alloys to hydrogen embrittlement and hydrogen-assisted cracking • ISO 10587:2000 Metallic and other inorganic coatings - Test for residual embrittlement in both metallic- coated and uncoated externally-threaded articles and rods - Inclined wedge method • ISO 11114-4:2017 Transportable gas cylinders - Compatibility of cylinder and valve materials with gas contents - Part 4: Test methods for selecting steels resistant to hydrogen embrittlement 20
  18. © ITRI. 工業技術研究院著作 21 Species Maximum Concentration (µmol/mol) (ppm) Impact

    Level 影響等級 Water(水) 5 Severe 嚴重 Total hydrocarbons(碳氫化合物總量) 2 非關鍵(≦ C7 ) Severe 嚴重(> C7 ) Oxygen(氧) 5 Severe 嚴重 Helium(氦) 300 Not Severe 非關鍵 Nitrogen/Argon(氮/氬) 100 Not Severe 非關鍵 Carbon Dioxide(二氧化碳) 2 Not Severe 非關鍵 Carbon Monoxide(一氧化碳) 0.2 Severe 嚴重 Total sulphur compounds(含硫量) 0.0004 Very Severe 非常嚴重 Formaldehyde(甲醛) 0.01 Very Severe 非常嚴重 Formic acid(甲酸) 0.2 Very Severe 非常嚴重 Ammonia(氨) 0.1 Very Severe 非常嚴重 Total halogenated compounds(鹵化物) 0.05 Very Severe 非常嚴重 Note: Severe: issues of adsorption and stability. Very severe: reactive impurity. Not Severe: no real effect under evaluation; Hydrogen Fuel Quality: ISO 14687:2019