Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Discovering Universal Geometry in Embeddings wi...

Momose Oyama
December 21, 2023

Discovering Universal Geometry in Embeddings with ICA

2023年12月20日 NLPコロキウム

Momose Oyama

December 21, 2023
Tweet

More Decks by Momose Oyama

Other Decks in Research

Transcript

  1. ⼤⼭百々勢 (Oyama Momose) l 京都⼤学 下平研究室 修⼠2年 (D進の予定) l 埋め込み表現の研究

    ◦ Norm of Word Embedding Encodes Information Gain [Oyama, Yokoi, Shimodaira, EMNLP 2023] [Paper] ◦ Discovering Universal Geometry in Embeddings with ICA [Yamagiwa*, Oyama*, Shimodaira, EMNLP 2023] [Paper] l 国内のコミュニティ ◦ NLP, YANS ◦ IBIS, 統計連合⼤会 2
  2. ICAは独⽴な軸を⾒つける変換 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑)

    𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分 5 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
  3. ICAは独⽴な軸を⾒つける変換 𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分

    単語埋め込み 𝑑個の次元に分散して表現された 𝑛単語分の意味情報 𝑑個の独⽴な意味情報に分離された 𝑛単語の表現 (これから⾒ていきます) 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑) 6 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
  4. 単語ベクトルをヒートマップで可視化 l Skip-gram with Negative Samplingで学習した 単語ベクトル l ヒートマップ ◦

    ⾏: 単語ベクトル ◦ 列: 次元 (5/300) l 各要素の⼤⼩は解釈できない ◦ 「分散」表現なので ⾃然なこと 8
  5. ICA後は各次元が持つ意味を解釈できる l 16軸: ⾷べ物 (dishes, …) l 26軸: ⾞ (cars,

    …) l 35軸: 映画 (film, …) l 34軸: イタリア (italian, …) l 56軸: ⽇本 (japanese, …) 10
  6. 独⽴成分は「尖って」いて解釈可能 l 2軸に沿った散布図 ◦ イタリア軸と⾞軸 ◦ ⽇本軸と映画軸 l 加法構成性 ◦

    Ferrari ≈ italian + cars ◦ kurosawa ≈ japanese + film l 300次元よりも⼩さな部分 空間で単語の意味を表現 11
  7. まとめ l ICAを使って 埋め込みを分析した l わかったこと 1. 埋め込みの独⽴成分は 「尖って」いて解釈可能 2.

    ⾔語・モデル・ドメインの 違いを超えて普遍的 l PCAだと上⼿くいかない 23