Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アクセス頻度予測に基づく仮想サーバの計画的オートスケーリング/Scheduled Autosc...
Search
monochromegane
June 24, 2017
Technology
4
3.5k
アクセス頻度予測に基づく仮想サーバの計画的オートスケーリング/Scheduled Autoscaling of Virtual Servers by Access Frequency Prediction
情報処理学会インターネットと運用技術研究会(IOT) 通算第 38 回 研究会
http://www.iot.ipsj.or.jp/news/iot38-program
monochromegane
June 24, 2017
Tweet
Share
More Decks by monochromegane
See All by monochromegane
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
990
ベクトル検索システムの気持ち
monochromegane
34
11k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
190
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
270
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
930
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
570
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
970
Go言語でMac GPUプログラミング
monochromegane
1
640
Contextual and Nonstationary Multi-armed Bandits Using the Linear Gaussian State Space Model for the Meta-Recommender System
monochromegane
1
1.1k
Other Decks in Technology
See All in Technology
ClaudeCodeにキレない技術
gtnao
1
930
MCP とマネージド PaaS で実現する大規模 AI アプリケーションの高速開発
nahokoxxx
1
1k
今だから言えるセキュリティLT_Wordpress5.7.2未満を一斉アップデートせよ
cuebic9bic
2
180
SRE with AI:実践から学ぶ、運用課題解決と未来への展望
yoshiiryo1
1
570
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
13k
Autify Company Deck
autifyhq
2
44k
Four Keysから始める信頼性の改善 - SRE NEXT 2025
ozakikota
0
450
ABEMAの本番環境負荷試験への挑戦
mk2taiga
5
1.5k
AIコードアシスタントとiOS開発
jollyjoester
1
200
Talk to Someone At Delta Airlines™️ USA Contact Numbers
travelcarecenter
0
160
地図と生成AI
nakasho
0
440
セキュアなAI活用のためのLiteLLMの可能性
tk3fftk
1
480
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.6k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Embracing the Ebb and Flow
colly
86
4.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
RailsConf 2023
tenderlove
30
1.2k
Optimizing for Happiness
mojombo
379
70k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Transcript
ࡾ༔հɺদຊ྄հɺྗ݈࣍*ɺ܀ྛ݈ଠ / ϖύϘݚڀॴ / *ྗ݈ٕ࣍ज़࢜ࣄॴ 2017.06.24 ୈ38ճ ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ ΞΫηεස༧ଌʹجͮ͘
ԾαʔόͷܭըతΦʔτεέʔϦϯά
1. Ծαʔόӡ༻࠷దԽͷഎܠͱຊݚڀͷత 2. ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ 3. ΞΫηεස༧ଌʹجͮ͘ԾαʔόͷܭըతΦʔτε έʔϦϯά 4. ࣮ݧͱߟ 5.
·ͱΊ 2 ࣍
1. Ծαʔόӡ༻࠷దԽͷഎܠͱ ຊݚڀͷత
• ΫϥυαʔϏεͷීٴ • ར༻ऀಈʹ߹ΘͤͯΞΫηεස͕มಈ͢ΔWebαʔϏε ӡ༻ʹͱͬͯॊೈͳߏมߋ͕ՄೳͳΫϥυαʔϏε ੑ͕ߴ͍ • ΫϥυαʔϏεैྔ՝͕ۚओྲྀ • ॲཧೳྗΛอͪͭͭඞཁ࠷খݶͷԾαʔόͰӡ༻͠ར༻ྉ
ۚΛ੍͢Δඞཁ͕͋Δ 4 ݚڀͷഎܠ
• ΦʔτεέʔϦϯάܖػͷج४ܾఆ͕ࠔ • Ծαʔόىಈྃ·Ͱͷ࣌ؒࠩʹىҼ͢ΔҰ࣌తͳॲཧੑೳ ͷෆ 5 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ ߴਫ਼ͳधཁ༧ଌʹجͮ͘ܭըతͳԾαʔόͷࣄલ४උ
• WebΞϓϦέʔγϣϯߏͷෳࡶ͞ʹґଘ͠ͳ͍ • ༧ଌਫ਼্ͷͨΊधཁʹӨڹΛ༩͑ΔཁҼΛߟྀ͢Δ • Ծαʔόͷෛՙ͕ҰఆʹอͨΕͨ҆ఆ͔ͭޮతͳӡ༻ 6 ຊݚڀͷత ߴਫ਼ͳधཁ༧ଌʹجͮ͘ܭըతͳΦʔτεέʔϦϯά
2. ैདྷͷԾαʔόӡ༻࠷దԽͷ՝
• ϦιʔεมಈͱWebαʔϏεશମͷؔੑΛѲ͠ɺదͳ ࢦඪͱᮢΛܾఆ͢Δ͜ͱࠔ • ࣌ؒ͝ͱͷWebαʔϏεར༻ಈͷਪҠ͕ଟ͘ͷཁҼ͔Βߏ ͞ΕΔ߹ɺదͳࢦඪͱᮢΛܾఆ͢Δ͜ͱࠔ 8 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ ΦʔτεέʔϦϯάܖػͷج४ܾఆ͕ࠔ
• աڈͷαʔόधཁʹج͖ͮ౷ܭతʹݟੵΔख๏Ͱ෮ ͷͳ͍ෆఆظͳཁҼΛ༧ଌʹऔΓࠐΊͳ͍ • ωοτϫʔΫͷτϥώοΫٳͳͲͷཁҼʹΑΓมಈ͕͋Δ͜ͱ͕ΒΕ ͓ͯΓɺWebαʔϏεಈ༧ଌʹԠ༻Ͱ͖Δͱߟ͑ΒΕΔɻ 9 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ αʔόधཁͷࣗಈ༧ଌͱ༧ଌਫ਼
• ϦιʔεมಈΛܖػͱ͢ΔԠతʹαʔόधཁʹै͢Δߏ มߋͰҰ࣌తͳॲཧੑೳͷෆΛආ͚ΒΕͳ͍ 10 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ Ծαʔόىಈ࣌ؒࠩʹىҼ͢ΔҰ࣌తͳॲཧੑೳͷෆ
3. ΞΫηεස༧ଌʹجͮ͘ ԾαʔόͷܭըతΦʔτεέʔϦϯά
12 ఏҊख๏ • WebαʔϏεશମͰҰఆ࣌ؒʹॲཧͨ͠ΞΫηεසͰ͋Δ εϧʔϓοτΛࢦඪͱ͠ɺӡ༻্ɺܦݧతʹѲ͞Ε͍ͯΔ҆ ఆͯ͠ӡ༻ՄೳͳΛࢦ͢ • աڈͷΞΫηεසͱෆఆظͳมಈཁҼ͔Β༧ଌϞσϧΛ ಋ͘ •
༧ଌతͳߏมߋΛ՝ۚ୯ҐͰ͋Δ1࣌ؒΛ୯Ґʹߦ͏ ΞΫηεස༧ଌʹجͮ͘ԾαʔόͷܭըతΦʔτεέʔϦϯά
13 ఏҊख๏
14 ΞΫηεස༧ଌϞσϧ • ظؒͷ࣌ܥྻσʔλʹରͯ͠༧ଌਫ਼ͷߴ͍LSTMΛ༻͍Δ • աڈͷ࣌ܥྻσʔλʹՃ͑ɺWebαʔϏεӡ༻ͷதͰ֫ಘ͠ ͖ͯͨΞΫηεසӨڹΛ༩͑ΔෆఆظͳཁҼೖྗͱ͢Δ
15 ΞΫηεස༧ଌϞσϧ ,FSBTʹΑΔΞΫηεස༧ଌͷ࣮ -45.ϞσϧΛఆٛ ֶशΛऩଋͤ͞ΔͨΊೖྗΛਖ਼نԽ ͢ΔΛఆٛ աڈΞΫηεසͱ֎తཁҼΛݩʹֶश
16 ΞΫηεස༧ଌϞσϧ ΞΫηεස༧ଌϞσϧ ֶशσʔλΫϥυαʔϏεͷඪ४՝ ۚ୯ҐͰ͋Δ࣌ؒΛཻͱ͢Δ 8FCαʔϏεͷ࠷ఆৗੑΛ֬ೝͰ͖Δ࣌ؒͷσʔλ Λೖྗͱ͠ɺ࣍ͷ࣌ؒͷΞΫηεස༧ଌΛग़ྗͱ͢Δ ˞࣌ؒޙҎ߱༧ଌΛؚΊͨظΛೖྗͱ͢Δ
17 Ծαʔόࢉग़ • ༧ଌͨ͠ΞΫηεසΛجʹɺWebαʔϏεΛ҆ఆͯ͠ӡ༻ Ͱ͖Δ҆ͱͳΔεϧʔϓοτΛ֬อͰ͖ΔΛٻΊΔ ༧ଌΞΫηεසʹର͠εϧʔϓοτΛ ֬อͰ͖ΔΛࢉग़͢Δ 5<ΞΫηεස> 1<༧ଌΞΫηεස࣌> -αʔόԼݶ
4. ࣮ݧͱߟ
• WebαʔϏεͷϓϩμΫγϣϯڥʹΞΫηεස༧ଌͳΒͼ ʹαʔόࢉग़γεςϜΛಋೖ͠ɺٻΊͨʹج͖ͮܭը తΦʔτεέʔϦϯάΛ࣮ࢪ • ҟͳΔΞΫηεͷ͋Δ2ͭͷαʔό܈Λରͱͨ͠ • ඇఆৗͷཁҼͷՃຯʹΑΔΞΫηεස༧ଌਫ਼ͷධՁ • ఏҊख๏ʹΑΔॲཧੑೳͱԾαʔόͷ࠷దԽͷධՁ
19 ධՁํ๏ͱධՁڥ
• WebαʔϏεӡ༻ऀ͕ӡ༻ͷதͰ֫ಘ͖ͯͨ͠ΞΫηεස ʹӨڹΛ༩͑ΔෆఆظཁҼ • શར༻ऀ͚ͷϓογϡ৴ • ࣌ؒݶఆΩϟϯϖʔϯ 20 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ
• ࠓճͷධՁͰɺରͷ WebαʔϏεʹ͓͍ͯཌ ͕ฏͷ߹ɺؒʹΞΫ ηεස͕૿Ճ͢Δͱ͍͏ ܦݧଇΛཁҼͱͯ͠Ճ͑ͨ 21 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ
22 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ ඇఆৗͷཁҼΛؚ·ͳ͍ ඇఆৗͷཁҼΛؚΉ ฏۉೋޡࠩ "܈ ฏۉೋޡࠩ #܈
• ֶशɺݕূσʔλʹର͢Δ༧ଌਫ਼ΛฏۉೋޡࠩͰൺֱ
23 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ ؒʹීஈͱҟͳΔͱͳΔಛੑΛଊ ͑ͨ༧ଌ͕ߦΘΕ͍ͯΔɻ
• ඇఆৗͷཁҼΛՃຯ͢Δ͜ͱʹΑΓ͍ͣΕͷ܈Ͱਫ਼ͷ্ ͕ݟΒΕͨ • ཌ͕ฏͰ͋Δ߹ͷؒଳͷΞΫηεසͷಛੑΛଊ ͑ͨ༧ଌ͕Ͱ͖ͨ • ରʹཁҼ͕Өڹ͠ͳ͍࣌ؒଳʹ͍ͭͯཁҼʹΑΓ༧ଌਫ਼ ͕Լ͕Δ߹͋ΔͨΊɺཁҼͷ࡞༻͢Δ࣌ؒଳΛߜΓࠐΉ ͷʹΑΓਫ਼վળ͕ظͰ͖Δ
24 ߟ
• ΞΫηεස༧ଌΛ༻͍ͨܭըతΦʔτεέʔϦϯάʹΑΔॲ ཧੑೳͱԾαʔόͷ࠷దԽΛධՁ • ༨ͳԾαʔόͷىಈ੍͕͞Εͨ͜ͱΛݕূ • ௐ͞ΕͨԾαʔό͕దͰ͋Δ͜ͱΛݕূ 25 ܭըతΦʔτεέʔϦϯάͷධՁ
26 ܭըతΦʔτεέʔϦϯάͷධՁ ԾαʔόͷਪҠ ͋ͨΓͷαʔό૯ىಈ࣌ؒ"܈ ը૾্ Ͱ͔࣌ؒΒ࣌ؒʹɺ#܈ ը૾Լ Ͱ ͔࣌ؒΒ࣌ؒʹݮ
˞"܈ͷ࣌ࢉग़͕ԼݶΛԼ ճͬͨͨΊɺͷมಈݟΒΕͳ͍
27 ܭըతΦʔτεέʔϦϯάͷධՁ ΞΫηεසͷਪҠ ͋ͨΓΞΫηεසͷඪ४ภࠩ"܈ ը ૾্ Ͱ͔Βʹɺ#܈ ը ૾Լ Ͱ͔ΒʹมԽɻ
ख๏ద༻ޙʹεϧʔϓοτ͕҆ఆ͍ͯ͠Δ ͜ͱ͕Θ͔Δɻ ˞"܈ͷ૿ՃԼݶӡ༻ͱͳͬͨ࣌ؒଳ ͷ͋ͨΓͷεϧʔϓοτ૿ՃʹΑΔ ͷͱߟ͑ΒΕΔ
• ఏҊख๏ʹΑΔܭըతΦʔτεέʔϦϯάʹΑΓԾαʔό Λ࣌ؒ͝ͱʹௐ͠ɺ͔ͭɺ1͋ͨΓͷΞΫηεස͕Ұ ఆʹอͨΕͨ͜ͱͰ࠷దͳͰ҆ఆͨ͠ॲཧੑೳΛอͯΔ͜ ͱ͕֬ೝͰ͖ͨ • εϧʔϓοτͷΏΒ͗࣌ؒଳ͝ͱʹΞΫηε࣌ͷॲཧ༰ ʹภΓ͕ݪҼͱߟ͑ΒΕΔͨΊɺHTTPϦΫΤετϝιουͳ Ͳͷछผ͝ͱʹεϧʔϓοτͷ҆Λྨ͢Δ͜ͱͰਫ਼্ ͕ظͰ͖Δɻ
28 ߟ
5. ·ͱΊ
• ఏҊख๏Ͱ͋ΔɺΞΫηεස༧ଌʹجͮ͘ܭըతΦʔτεέʔ ϦϯάʹΑΓɺޮతͰ҆ఆͨ͠αʔόʹΑΔӡ༻͕Ͱ͖ ͨɻ • ඇఆৗͷཁҼΛऔΓࠐΉ͜ͱͰWebαʔϏεӡ༻ܦݧଇ༧ ଌʹऔΓࠐΉ͜ͱ͕Ͱ͖ͨɻ • ࠓޙԠతͳΦʔτεέʔϦϯάͱΈ߹ΘͤΔ͜ͱͰಥൃ తͳΞΫηεසมಈʹରԠ͢ΔߏΛݕ౼͍ͨ͠
30 ·ͱΊ
None