Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
アクセス頻度予測に基づく仮想サーバの計画的オートスケーリング/Scheduled Autosc...
Search
monochromegane
June 24, 2017
Technology
4
3.5k
アクセス頻度予測に基づく仮想サーバの計画的オートスケーリング/Scheduled Autoscaling of Virtual Servers by Access Frequency Prediction
情報処理学会インターネットと運用技術研究会(IOT) 通算第 38 回 研究会
http://www.iot.ipsj.or.jp/news/iot38-program
monochromegane
June 24, 2017
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語での実装を通して学ぶLLMファインチューニングの仕組み / fukuokago22-llm-peft
monochromegane
0
160
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
240
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
5.2k
ベクトル検索システムの気持ち
monochromegane
38
12k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
230
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
300
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
1.1k
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
740
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
1.1k
Other Decks in Technology
See All in Technology
Dify on AWS の選択肢
ysekiy
0
120
Master Dataグループ紹介資料
sansan33
PRO
1
4k
"'TSのAPI型安全”の対価は誰が払う?不公平なスキーマ駆動に終止符を打つハイブリッド戦略
hal_spidernight
0
210
Excelデータ分析で学ぶディメンショナルモデリング ~アジャイルデータモデリングへ向けて~ by @Kazaneya_PR / 20251126
kazaneya
PRO
3
720
"なるべくスケジューリングしない" を実現する "PreferNoSchedule" taint
superbrothers
0
120
GitHub を組織的に使いこなすために ソニーが実践した全社展開のプラクティス
sony
18
9.1k
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.2k
都市スケールAR制作で気をつけること
segur
0
210
IPv6-mostly field report from RubyKaigi 2026
sorah
0
230
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
24
14k
『ソフトウェア』で『リアル』を動かす:クレーンゲームからデータ基盤までの統一アーキテクチャ / アーキテクチャConference 2025
genda
0
2.3k
プロダクト負債と歩む持続可能なサービスを育てるための挑戦
sansantech
PRO
1
1.2k
Featured
See All Featured
Music & Morning Musume
bryan
46
7k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
What's in a price? How to price your products and services
michaelherold
246
12k
Visualization
eitanlees
150
16k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Why Our Code Smells
bkeepers
PRO
340
57k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Code Review Best Practice
trishagee
73
19k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Transcript
ࡾ༔հɺদຊ྄հɺྗ݈࣍*ɺ܀ྛ݈ଠ / ϖύϘݚڀॴ / *ྗ݈ٕ࣍ज़࢜ࣄॴ 2017.06.24 ୈ38ճ ใॲཧֶձ Πϯλʔωοτͱӡ༻ٕज़ݚڀձ ΞΫηεස༧ଌʹجͮ͘
ԾαʔόͷܭըతΦʔτεέʔϦϯά
1. Ծαʔόӡ༻࠷దԽͷഎܠͱຊݚڀͷత 2. ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ 3. ΞΫηεස༧ଌʹجͮ͘ԾαʔόͷܭըతΦʔτε έʔϦϯά 4. ࣮ݧͱߟ 5.
·ͱΊ 2 ࣍
1. Ծαʔόӡ༻࠷దԽͷഎܠͱ ຊݚڀͷత
• ΫϥυαʔϏεͷීٴ • ར༻ऀಈʹ߹ΘͤͯΞΫηεස͕มಈ͢ΔWebαʔϏε ӡ༻ʹͱͬͯॊೈͳߏมߋ͕ՄೳͳΫϥυαʔϏε ੑ͕ߴ͍ • ΫϥυαʔϏεैྔ՝͕ۚओྲྀ • ॲཧೳྗΛอͪͭͭඞཁ࠷খݶͷԾαʔόͰӡ༻͠ར༻ྉ
ۚΛ੍͢Δඞཁ͕͋Δ 4 ݚڀͷഎܠ
• ΦʔτεέʔϦϯάܖػͷج४ܾఆ͕ࠔ • Ծαʔόىಈྃ·Ͱͷ࣌ؒࠩʹىҼ͢ΔҰ࣌తͳॲཧੑೳ ͷෆ 5 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ ߴਫ਼ͳधཁ༧ଌʹجͮ͘ܭըతͳԾαʔόͷࣄલ४උ
• WebΞϓϦέʔγϣϯߏͷෳࡶ͞ʹґଘ͠ͳ͍ • ༧ଌਫ਼্ͷͨΊधཁʹӨڹΛ༩͑ΔཁҼΛߟྀ͢Δ • Ծαʔόͷෛՙ͕ҰఆʹอͨΕͨ҆ఆ͔ͭޮతͳӡ༻ 6 ຊݚڀͷత ߴਫ਼ͳधཁ༧ଌʹجͮ͘ܭըతͳΦʔτεέʔϦϯά
2. ैདྷͷԾαʔόӡ༻࠷దԽͷ՝
• ϦιʔεมಈͱWebαʔϏεશମͷؔੑΛѲ͠ɺదͳ ࢦඪͱᮢΛܾఆ͢Δ͜ͱࠔ • ࣌ؒ͝ͱͷWebαʔϏεར༻ಈͷਪҠ͕ଟ͘ͷཁҼ͔Βߏ ͞ΕΔ߹ɺదͳࢦඪͱᮢΛܾఆ͢Δ͜ͱࠔ 8 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ ΦʔτεέʔϦϯάܖػͷج४ܾఆ͕ࠔ
• աڈͷαʔόधཁʹج͖ͮ౷ܭతʹݟੵΔख๏Ͱ෮ ͷͳ͍ෆఆظͳཁҼΛ༧ଌʹऔΓࠐΊͳ͍ • ωοτϫʔΫͷτϥώοΫٳͳͲͷཁҼʹΑΓมಈ͕͋Δ͜ͱ͕ΒΕ ͓ͯΓɺWebαʔϏεಈ༧ଌʹԠ༻Ͱ͖Δͱߟ͑ΒΕΔɻ 9 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ αʔόधཁͷࣗಈ༧ଌͱ༧ଌਫ਼
• ϦιʔεมಈΛܖػͱ͢ΔԠతʹαʔόधཁʹै͢Δߏ มߋͰҰ࣌తͳॲཧੑೳͷෆΛආ͚ΒΕͳ͍ 10 ैདྷͷԾαʔόӡ༻࠷దԽͷ՝ Ծαʔόىಈ࣌ؒࠩʹىҼ͢ΔҰ࣌తͳॲཧੑೳͷෆ
3. ΞΫηεස༧ଌʹجͮ͘ ԾαʔόͷܭըతΦʔτεέʔϦϯά
12 ఏҊख๏ • WebαʔϏεશମͰҰఆ࣌ؒʹॲཧͨ͠ΞΫηεසͰ͋Δ εϧʔϓοτΛࢦඪͱ͠ɺӡ༻্ɺܦݧతʹѲ͞Ε͍ͯΔ҆ ఆͯ͠ӡ༻ՄೳͳΛࢦ͢ • աڈͷΞΫηεසͱෆఆظͳมಈཁҼ͔Β༧ଌϞσϧΛ ಋ͘ •
༧ଌతͳߏมߋΛ՝ۚ୯ҐͰ͋Δ1࣌ؒΛ୯Ґʹߦ͏ ΞΫηεස༧ଌʹجͮ͘ԾαʔόͷܭըతΦʔτεέʔϦϯά
13 ఏҊख๏
14 ΞΫηεස༧ଌϞσϧ • ظؒͷ࣌ܥྻσʔλʹରͯ͠༧ଌਫ਼ͷߴ͍LSTMΛ༻͍Δ • աڈͷ࣌ܥྻσʔλʹՃ͑ɺWebαʔϏεӡ༻ͷதͰ֫ಘ͠ ͖ͯͨΞΫηεසӨڹΛ༩͑ΔෆఆظͳཁҼೖྗͱ͢Δ
15 ΞΫηεස༧ଌϞσϧ ,FSBTʹΑΔΞΫηεස༧ଌͷ࣮ -45.ϞσϧΛఆٛ ֶशΛऩଋͤ͞ΔͨΊೖྗΛਖ਼نԽ ͢ΔΛఆٛ աڈΞΫηεසͱ֎తཁҼΛݩʹֶश
16 ΞΫηεස༧ଌϞσϧ ΞΫηεස༧ଌϞσϧ ֶशσʔλΫϥυαʔϏεͷඪ४՝ ۚ୯ҐͰ͋Δ࣌ؒΛཻͱ͢Δ 8FCαʔϏεͷ࠷ఆৗੑΛ֬ೝͰ͖Δ࣌ؒͷσʔλ Λೖྗͱ͠ɺ࣍ͷ࣌ؒͷΞΫηεස༧ଌΛग़ྗͱ͢Δ ˞࣌ؒޙҎ߱༧ଌΛؚΊͨظΛೖྗͱ͢Δ
17 Ծαʔόࢉग़ • ༧ଌͨ͠ΞΫηεසΛجʹɺWebαʔϏεΛ҆ఆͯ͠ӡ༻ Ͱ͖Δ҆ͱͳΔεϧʔϓοτΛ֬อͰ͖ΔΛٻΊΔ ༧ଌΞΫηεසʹର͠εϧʔϓοτΛ ֬อͰ͖ΔΛࢉग़͢Δ 5<ΞΫηεස> 1<༧ଌΞΫηεස࣌> -αʔόԼݶ
4. ࣮ݧͱߟ
• WebαʔϏεͷϓϩμΫγϣϯڥʹΞΫηεස༧ଌͳΒͼ ʹαʔόࢉग़γεςϜΛಋೖ͠ɺٻΊͨʹج͖ͮܭը తΦʔτεέʔϦϯάΛ࣮ࢪ • ҟͳΔΞΫηεͷ͋Δ2ͭͷαʔό܈Λରͱͨ͠ • ඇఆৗͷཁҼͷՃຯʹΑΔΞΫηεස༧ଌਫ਼ͷධՁ • ఏҊख๏ʹΑΔॲཧੑೳͱԾαʔόͷ࠷దԽͷධՁ
19 ධՁํ๏ͱධՁڥ
• WebαʔϏεӡ༻ऀ͕ӡ༻ͷதͰ֫ಘ͖ͯͨ͠ΞΫηεස ʹӨڹΛ༩͑ΔෆఆظཁҼ • શར༻ऀ͚ͷϓογϡ৴ • ࣌ؒݶఆΩϟϯϖʔϯ 20 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ
• ࠓճͷධՁͰɺରͷ WebαʔϏεʹ͓͍ͯཌ ͕ฏͷ߹ɺؒʹΞΫ ηεස͕૿Ճ͢Δͱ͍͏ ܦݧଇΛཁҼͱͯ͠Ճ͑ͨ 21 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ
22 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ ඇఆৗͷཁҼΛؚ·ͳ͍ ඇఆৗͷཁҼΛؚΉ ฏۉೋޡࠩ "܈ ฏۉೋޡࠩ #܈
• ֶशɺݕূσʔλʹର͢Δ༧ଌਫ਼ΛฏۉೋޡࠩͰൺֱ
23 ඇఆৗͷཁҼͷՃຯʹΑΔ༧ଌਫ਼ͷධՁ ؒʹීஈͱҟͳΔͱͳΔಛੑΛଊ ͑ͨ༧ଌ͕ߦΘΕ͍ͯΔɻ
• ඇఆৗͷཁҼΛՃຯ͢Δ͜ͱʹΑΓ͍ͣΕͷ܈Ͱਫ਼ͷ্ ͕ݟΒΕͨ • ཌ͕ฏͰ͋Δ߹ͷؒଳͷΞΫηεසͷಛੑΛଊ ͑ͨ༧ଌ͕Ͱ͖ͨ • ରʹཁҼ͕Өڹ͠ͳ͍࣌ؒଳʹ͍ͭͯཁҼʹΑΓ༧ଌਫ਼ ͕Լ͕Δ߹͋ΔͨΊɺཁҼͷ࡞༻͢Δ࣌ؒଳΛߜΓࠐΉ ͷʹΑΓਫ਼վળ͕ظͰ͖Δ
24 ߟ
• ΞΫηεස༧ଌΛ༻͍ͨܭըతΦʔτεέʔϦϯάʹΑΔॲ ཧੑೳͱԾαʔόͷ࠷దԽΛධՁ • ༨ͳԾαʔόͷىಈ੍͕͞Εͨ͜ͱΛݕূ • ௐ͞ΕͨԾαʔό͕దͰ͋Δ͜ͱΛݕূ 25 ܭըతΦʔτεέʔϦϯάͷධՁ
26 ܭըతΦʔτεέʔϦϯάͷධՁ ԾαʔόͷਪҠ ͋ͨΓͷαʔό૯ىಈ࣌ؒ"܈ ը૾্ Ͱ͔࣌ؒΒ࣌ؒʹɺ#܈ ը૾Լ Ͱ ͔࣌ؒΒ࣌ؒʹݮ
˞"܈ͷ࣌ࢉग़͕ԼݶΛԼ ճͬͨͨΊɺͷมಈݟΒΕͳ͍
27 ܭըతΦʔτεέʔϦϯάͷධՁ ΞΫηεසͷਪҠ ͋ͨΓΞΫηεසͷඪ४ภࠩ"܈ ը ૾্ Ͱ͔Βʹɺ#܈ ը ૾Լ Ͱ͔ΒʹมԽɻ
ख๏ద༻ޙʹεϧʔϓοτ͕҆ఆ͍ͯ͠Δ ͜ͱ͕Θ͔Δɻ ˞"܈ͷ૿ՃԼݶӡ༻ͱͳͬͨ࣌ؒଳ ͷ͋ͨΓͷεϧʔϓοτ૿ՃʹΑΔ ͷͱߟ͑ΒΕΔ
• ఏҊख๏ʹΑΔܭըతΦʔτεέʔϦϯάʹΑΓԾαʔό Λ࣌ؒ͝ͱʹௐ͠ɺ͔ͭɺ1͋ͨΓͷΞΫηεස͕Ұ ఆʹอͨΕͨ͜ͱͰ࠷దͳͰ҆ఆͨ͠ॲཧੑೳΛอͯΔ͜ ͱ͕֬ೝͰ͖ͨ • εϧʔϓοτͷΏΒ͗࣌ؒଳ͝ͱʹΞΫηε࣌ͷॲཧ༰ ʹภΓ͕ݪҼͱߟ͑ΒΕΔͨΊɺHTTPϦΫΤετϝιουͳ Ͳͷछผ͝ͱʹεϧʔϓοτͷ҆Λྨ͢Δ͜ͱͰਫ਼্ ͕ظͰ͖Δɻ
28 ߟ
5. ·ͱΊ
• ఏҊख๏Ͱ͋ΔɺΞΫηεස༧ଌʹجͮ͘ܭըతΦʔτεέʔ ϦϯάʹΑΓɺޮతͰ҆ఆͨ͠αʔόʹΑΔӡ༻͕Ͱ͖ ͨɻ • ඇఆৗͷཁҼΛऔΓࠐΉ͜ͱͰWebαʔϏεӡ༻ܦݧଇ༧ ଌʹऔΓࠐΉ͜ͱ͕Ͱ͖ͨɻ • ࠓޙԠతͳΦʔτεέʔϦϯάͱΈ߹ΘͤΔ͜ͱͰಥൃ తͳΞΫηεසมಈʹରԠ͢ΔߏΛݕ౼͍ͨ͠
30 ·ͱΊ
None