Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-driven Innovation
Search
Matt Wood
October 10, 2012
Technology
1
420
Data-driven Innovation
Slides from my session at the #AWS Public Sector Summit, 2012.
Matt Wood
October 10, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
460
A Platform for Big Data
mza
6
810
The Data Lifecycle
mza
5
550
Provision Throughput Like a Boss
mza
0
500
Impact of Cloud Computing: Life Sciences
mza
2
900
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1.2k
From Analytics to Intelligence: Amazon Redshift
mza
9
1k
Scaling Science
mza
3
550
Other Decks in Technology
See All in Technology
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
460
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
210
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
160
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
900
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
290
プロポーザルに込める段取り八分
shoheimitani
1
180
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.7k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
620
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.2k
Context Engineeringの取り組み
nutslove
0
310
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
Discover your Explorer Soul
emna__ayadi
2
1.1k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
64
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Paper Plane
katiecoart
PRO
0
46k
Transcript
Data-driven innovation
[email protected]
Dr. Matt Wood @mza
Hello
Hello
Data
DNA
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know this, because...
None
A T C G G T C C A G
G
A T C G G T C C A G
G A G C C A G G U C C Transcription
A T C G G T C C A G
G A G C C A G G U C C Translation Ser Glu Val Transcription
None
None
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know all that, because...
Human Genome Project
40 species ensembl.org
Compare
Change
Less
None
None
Compare
Transformative
None
Data generation costs are falling everywhere
Customer segmentation, financial modeling, system analysis, line of sight, business
intelligence.
Opportunity
Transformation
Innovation
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput highly constrained
Barrier
Data generation challenge X
Analytics challenge
Accessibility challenge
Enter the AWS Cloud
Utility
Remove constraints
Data-driven innovation
Distributed
2
2 Software for distributed storage & analysis
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Software Frameworks for data-intensive work loads. Distributed by design.
Infrastructure Platform for data-intensive work loads. Distributed by design.
Support the data timeline
Generation Collection & storage Analytics & computation Collaboration & sharing
highly constrained
Generation Collection & storage Analytics & computation Collaboration & sharing
Lower the barrier to entry
Agility
Responsive
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation DynamoDB Analytics & computation Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce S3, Public Datasets
Tools and techniques for working productively with data
Scale
Secure
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Amazon EC2
Scale out systems Embarrassingly parallel Queue based distribution Small, medium
and high scale
High performance
High performance Compute performance
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings +GPU
240 TFLOPS
High performance Compute performance IO performance
Unstructured
Variable
Amazon DynamoDB Predictable, consistent performance Unlimited storage Single digit millisecond
latencies No schema. Zero admin.
...and SSDs for all
hi1.4xlarge 2 x 1Tb SSD storage 10 gigabit networking HVM:
90k IOPS read, 9k to 75k write PV: 120k IOPS read, 10k to 85k write
Netflix “The hi1.4xlarge configuration is about half the system cost
for the same throughput.” http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
Provisioned IOPS Provision required IO performance EBS optimized instances
Cost optimization
Reserved capacity
Reserved capacity On-demand
Reserved capacity On-demand
Spot instances
None
$0.2530 vs $2.40
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
map/reduce
Map. Reduce.
Write functions. Scale up.
Hadoop
Undi erentiated heavy lifting
Amazon Elastic MapReduce Managed Hadoop Clusters Easy to provision and
monitor Write two functions. Scale up. Choice of Hadoop flavors
Amazon Elastic MapReduce Integrates with S3 Analytics for DynamoDB Perfect
for Spot pricing
Input data S3
Elastic MapReduce Code Input data S3
Elastic MapReduce Code Name node Input data S3
Elastic MapReduce Code Name node Input data S3 Elastic cluster
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS Queries + BI Via JDBC, Pig, Hive
Elastic MapReduce Code Name node Output S3 + SimpleDB Input
data S3 Elastic cluster HDFS Queries + BI Via JDBC, Pig, Hive
Output S3 + SimpleDB Input data S3
CDC Centers for Disease Control and Prevention
“BioSense 2.0 protects the health of the American people by
providing timely insight into the health of communities, regions, and the nation by o ering a variety of features to improve data collection, standardization, storage, analysis, and collaboration”
Health data Collection & storage Analytics & computation Collaboration &
sharing
Health data Collection & storage Analytics & computation Collaboration &
sharing highly constrained
HIPAA, HITECH, FISMA Moderate
GovCloud
Beyond a definition of Big Data
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
Thank you aws.amazon.com @mza
[email protected]