Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
パブリック/プライベートクラウドでつかうKubernetes
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Ryosuke Suto
October 12, 2017
Technology
1
2.5k
パブリック/プライベートクラウドでつかうKubernetes
Ryosuke Suto
October 12, 2017
Tweet
Share
More Decks by Ryosuke Suto
See All by Ryosuke Suto
横断的なSRE推進と成熟度評価
strsk8
9
8.5k
GKEを利用したサービスの運用
strsk8
1
670
GKE@AbemaTV
strsk8
12
9.6k
re:Invent2015参加レポ
strsk8
0
340
成長し続けるインフラの安定運用事情
strsk8
19
5.3k
ソーシャルゲームDBの危機回避
strsk8
10
15k
Other Decks in Technology
See All in Technology
生成AIと余白 〜開発スピードが向上した今、何に向き合う?〜
kakehashi
PRO
0
150
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
150
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
4
460
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
400
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
400
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
0
640
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
1
170
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
200
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
Featured
See All Featured
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
WCS-LA-2024
lcolladotor
0
450
Code Reviewing Like a Champion
maltzj
527
40k
We Have a Design System, Now What?
morganepeng
54
8k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
We Are The Robots
honzajavorek
0
170
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.4k
The Limits of Empathy - UXLibs8
cassininazir
1
220
Embracing the Ebb and Flow
colly
88
5k
How STYLIGHT went responsive
nonsquared
100
6k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
Transcript
パブリック/プライベートクラウドでつかう Kubernetes Ryosuke Suto 2017/10/12 Kubernetes Meetup Tokyo #7
•須藤 涼介 @strsk •株式会社サイバーエージェント •技術本部 •サービスリライアビリティーグループ(SRG) •QC室 •エンジニア/マネージャー
Kubernetes
Public Cloud
None
None
•- node 200台 over •- 同時接続数十万 •- デプロイ •- kubetool
-> Deploykun •- ChatOps •- リリース共有、カナリアリリース AbemaTV • https://www.wantedly.com/companies/abema/post_articles/73396
•- ロギング •- CloudLogging + CloudPub/Sub •- Podの標準出力はLogging •- アプリケーションのログはPub/Subへ
•- Pub/Sub -> BigQuery, etc… •- 監視ツール •- Stackdriver, Prometheus AbemaTV • https://www.wantedly.com/companies/abema/post_articles/73396
Private Cloud (OpenStack)
•- 既存サービスのリプレース用 •- 開発環境構築中 •- レガシー環境、開発手法のモダン化 •- クラスター構築 •- kubespray(Ansible)
OpenStack
•- Dockerイメージ •- GCR •- ロギング •- 魔改造したFluentdからCloudLoggingへ •- 監視ツール
•- Datadog OpenStack
Private Cloudでのk8s運用 •- kubesprayでのデプロイが遅め •- 使わない部分も汎用的に記述されているため工夫が必要 •- すべて内部で完結させてしまうと運用コストが高くなる •- 適度に組み合わせて外に逃がす
Kubernetes採用の背景
•- 組織/システム的にマイクロサービスアーキテクチャを採用するようになる •- であれば各機能ごとにリリースもしやすいDocker一択 •- 開発初期は逆に属人性を生みやすい一面も •- 社内でもノウハウが溜まってくる •- 何より開発が活発
課題との歴史
デプロイフロー初期 •- あたたかみのある手動デプロイ •- Dockerイメージ自体はCircle CIでビルドしレジストリにPush •- 運用が初めてだったこともあり、開発時はkubectlによるリリースがデフォ •- 開発スケジュールが優先され、デプロイ周りを整えられないままローンチ
•- リリース時にSlackに連絡、手動でデプロイして様子を見て反映 •- 当然ながらオペミスが多発
デプロイフロー中期 •- 手動カナリアリリース •- ミスしても問題ないよう1Podだけリリースできるツールを開発 •- リリース時は1Podのみリリースし、しばらく問題がなければ全台に適用 •- 大きなミスは起きないまでも根本解決になっていない…
デプロイフロー後期 •- ChatOps •- リリース作成もカナリアリリースもSlack上からできるように! •- 手動からの解放 •- オペミスの削減
デプロイフロー後期
デプロイフロー今後 •- パイプラインベースのCI •- Spinnaker, Concourse CI, etc… •- 新規サービスで採用予定
•- カナリアリリース、判定、ロールバックを自動化 •- 社内に有識者がいたためConcourse CIを採用
デプロイフロー今後 •- Concourse CI •- Pivotalが開発 •- Go言語製 •- YAMLでジョブ、パイプラインを記述し結果をUIで見れる
デプロイフロー今後 •- Helmの導入検証 •- Kubernetesのパッケージマネージャ(rpmに対してyumのような) •- yamlファイルの作成コストを減らしたい •- Kubernetesの採用がより増えることを見越して
大量のロギング •- ログはFluentdで各ログストレージへ •- ログの量が多すぎてFluentdが高負荷に •- 標準出力は変わらずFluentdからCloud Loggingへ •- アプリケーションログはCloud
Pub/Subへ送り、Big Queryにバルクインサート
大量のメトリクス •- Podの監視はStackdriverでOK •- サービスが拡大し、Podが大量になるとStackdriverの表示が遅延 •- Prometheusの導入 •- ServiceにExporter用のendpointを追加 •-
Podが増減しても自動的に収集される •- より詳細かつ円滑な表示が可能に
まとめ
まとめ •- デプロイフローはまだまだ改善の余地あり •- 規模が大きくなった時のスケーリングが大事(当たり前) •- 自前でkubernetesを立てるときは全部管理しようとしない
一緒にはたらく仲間を募集しています! https://cyberagent-career.jp/ recruit/joboffer/81/112359/71-361