Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Oh, you're so random
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Vicent Martí
March 25, 2012
Programming
14
2.6k
Oh, you're so random
Randomness and pink ponies in Codemotion Rome 2012
Vicent Martí
March 25, 2012
Tweet
Share
More Decks by Vicent Martí
See All by Vicent Martí
Unicorns Die With Bullets Made of Glitter
tanoku
6
580
Threedee Tales From Urban Bohemia
tanoku
3
890
My Mom told me that Git doesn't scale
tanoku
28
2.1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Ruby is Unlike a Banana
tanoku
97
11k
A talk about libgit2
tanoku
11
1.7k
Other Decks in Programming
See All in Programming
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
130
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
180
AtCoder Conference 2025
shindannin
0
1.1k
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
220
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
460
CSC307 Lecture 04
javiergs
PRO
0
660
2026年 エンジニアリング自己学習法
yumechi
0
140
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
970
ぼくの開発環境2026
yuzneri
0
230
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
Featured
See All Featured
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Un-Boring Meetings
codingconduct
0
200
Into the Great Unknown - MozCon
thekraken
40
2.3k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Six Lessons from altMBA
skipperchong
29
4.1k
Google's AI Overviews - The New Search
badams
0
910
Transcript
None
select a random element
select a random element ‘tis one is ok.
None
None
Information Theory
hard TOPIC Information Theory
hard TOPIC dumb SPEAKER + Information Theory
0≤H(X)≤1 where X is a discrete random variable
0≤H(X)≤1 where X is a discrete random variable unpredictable
0≤H(X)≤1 where X is a discrete random variable unpredictable always
the same
None
ask a question.
None
bool is_random(char *bytes, size_t n) { }
bool is_random(char *bytes, size_t n) { } AGHHH
UNIFORM distribution
UNIFORM distribution
select a random element array[rand() % array.size]
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution AGHHH
This is how you kill the RANDOM pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
how to FIX:
how to FIX: 1. Random is hard
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
Math.random() // between 0.0 and 1.0 Javascript
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
prng.rand(5..9) #=> one of [5, 6, 7, 8, 9] prng.rand(5...9) #=> one of [5, 6, 7, 8] Ruby
Good.
Good. (but I don’t care)
None
“PRNGs and Hash functions are in the same family of
algorithms”
None
hash tables out of nowhere!
hash tables out of nowhere! O(1)
hash tables out of nowhere! O(1) uniform
pathological average data set: O(1)
pathological average data set: O(1)
pathological average data set: O(1) O(n)
ONE fix
ONE fix INT_MAX % size == 0
collide make them
collide make them • Brute force
collide make them • Brute force • MITM
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
problem & that’s a
problem & that’s a painful comparisons
problem & that’s a painful comparisons ~700ms responses
MANY fixes
MANY fixes (but only one is right)
MANY fixes (but only one is right) 1. Limiting request
size
this is bad and you should feel bad! MANY fixes
(but only one is right) 1. Limiting request size
MANY fixes (but only one is right) 2. Changing the
hash table
MANY fixes (but only one is right) 2. Changing the
hash table (no comment)
MANY fixes (but only one is right) 3. Bring back
the random
None
“Randomness is too important to be left to chance”
Thanks. “Randomness is too important to be left to chance”