Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ディープラーニングでコーデを提案/FashionTechMeetup#4
Search
tn1031
June 07, 2017
Technology
0
2.3k
ディープラーニングでコーデを提案/FashionTechMeetup#4
tn1031
June 07, 2017
Tweet
Share
More Decks by tn1031
See All by tn1031
Outfit Generation and Style Extraction via Bidirectional LSTM and Autoencoder
tn1031
0
130
インタラクティブな属性操作が可能なファッションアイテム検索/attribute manipulation survey
tn1031
0
1.2k
Autoencoderを用いたOutfitからのスタイル抽出/style auto encoder
tn1031
0
12k
fashion_workshop_survey/Size Recommendation System for Fashion E-commerce
tn1031
0
280
画像を用いたファッションアイテム検索/Image Retrieval for Fashion
tn1031
0
5.5k
ファッションアイテム検索における深層学習の活用/Fashion Item Retrieval using Deep Learning
tn1031
0
2.3k
KDD 2016勉強会/Images Don’t Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank
tn1031
0
1k
ファッションのコーディネートを自動生成してみた/FashionTech Talks Tokyo #1 LT
tn1031
2
1.1k
Fashion Tech x Machine Learning/twm_fashion_ml
tn1031
5
5.7k
Other Decks in Technology
See All in Technology
衝突して強くなる! BLUE GIANTと アジャイルチームの共通点とは ― いきいきと活気に満ちたグルーヴあるチームを作るコツ ― / BLUE GIANT and Agile Teams
naitosatoshi
0
300
生成AI時代に必要な価値ある意思決定を育てる「開発プロセス定義」を用いた中期戦略
kakehashi
PRO
1
270
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.3k
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
9.9k
Bye-Bye Query Spaghetti: Write Queries You'll Actually Understand Using Pipelined SQL Syntax
tobiaslampertlotum
0
130
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
1
230
Nstockの一人目エンジニアが 3年間かけて向き合ってきた セキュリティのこととこれから〜あれから半年〜
yo41sawada
0
200
AI時代にPdMとPMMはどう連携すべきか / PdM–PMM-collaboration-in-AI-era
rakus_dev
0
270
Platform開発が先行する Platform Engineeringの違和感
kintotechdev
2
190
DevIO2025_継続的なサービス開発のための技術的意思決定のポイント / how-to-tech-decision-makaing-devio2025
nologyance
0
160
なぜSaaSがMCPサーバーをサービス提供するのか?
sansantech
PRO
8
2.4k
RSCの時代にReactとフレームワークの境界を探る
uhyo
9
2.9k
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
910
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
284
13k
For a Future-Friendly Web
brad_frost
179
9.9k
Gamification - CAS2011
davidbonilla
81
5.4k
What's in a price? How to price your products and services
michaelherold
246
12k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Transcript
σΟʔϓϥʔχϯάͰίʔσΛఏҊ !UO7"4*-: JOD 'BTIJPO5FDI.FFUVQ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
w தଜຏ!UO w σʔλαΠΤϯςΟετ w લ৬ɿ4* w ࣄɿػցֶशɾը૾ೝࣝ w ΞϧΰϦζϜͷ։ൃ
ࣗݾհ !UO
3&4&"3$)ˍ%&7&-01.&/5 ࣗࣾͰഓͬͨ։ൃٕज़ͷఏڙ ɾΞϓϦ։ൃ ɾΫϩʔϦϯά ɾػցֶश ɾσΟʔϓϥʔχϯά ɾը૾ղੳ
։ൃٕͨ͠ज़ Ϟσϧண༻ը૾ εφοϓը૾ ΛΫΤϦͱͯ͠ը૾Λݕࡧ͢Δ ΫΤϦը૾ ݕग़ ݕࡧ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
ϑΝογϣϯͰѻ͏ը૾ ը૾ͱεφοϓը૾ͱ͍͏छྨͷυϝΠϯ͕ଘࡏ͢Δ w ஔ͖ࡱΓϚωΩϯͷը૾͕ଟ͍ w ਖ਼໘͔ΒΈͨ࣌ͷσβΠϯ͕Θ͔Γ͍͢ w ண༻Πϝʔδ͕༙͖ʹ͍͘
ը ૾ ε φ ο ϓ ը ૾ ը૾ ಛ w Ϟσϧ͕ண༻ͨ͠ը૾ w ண༻࣌ͷҹίʔσΟωʔτͷࢀߟʹͳΔ w ϙʔζഎܠʹΛڽΒ͍ͯ͠Δ
Γ͍ͨ͜ͱ ͷண༻ΠϝʔδΛఏڙ͍ͨ͠ w ண༻Πϝʔδͷఏڙར༻γʔϯͷى w ίʔσΟωʔτͷఏҊ ৄࡉΛΈ͍ͯΔϢʔβʔʹͱࣅ͍ͯΔΞΠςϜΛ ͬͨεφοϓը૾Λදࣔ͢Δ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
$//Λ༻͍ͨಛநग़ ΞΠςϜͷಛΛ$//ͰϕΫτϧԽ͢Δ w ը૾͔ΒΞΠςϜͷಛΛநग़ͯ͠ϕΫτϧԽ͢Δ w ϕΫτϧಉ࢜ͷҐஔؔྨࣅͱΈͳ͢͜ͱ͕Ͱ͖Δ ಛྔۭؒ f(x) ͍ۙ(ࣅ͍ͯΔ)
ԕ͍(ࣅ͍ͯͳ͍) ը૾σʔλ ॎԣ480pixelͷ߹ɺ࣍ݩ 480x480x3 = 691200 dim ը૾ಛྔ ը૾σʔλΛදݱ͢Δ࣍ͷϕΫτϧ ѹॖ ؔʹCNNΛ࠾༻
$//Λ༻͍ͨಛநग़ ͷྨࣅͷؔUSJQMFUMPTTͰධՁ͢Δ Anchor Positive Negative CNN CNN CNN w
ը૾ͷυϝΠϯʹؔͳ͘ڞ௨ͷωοτϫʔΫΛ͏ w ࣅ͍ͯΔը૾ಉ࢜ۙͮ͘Α͏ʹʗࣅ͍ͯͳ͍ը૾ಉ࢜ԕ͔͟ΔΑ͏ʹ Embedding margin ֶश Embedding
εφοϓը૾ͷදݱ εφοϓը૾ʹؚ·ΕΔΞΠςϜͷಛྔΛΧςΰϦຖʹܭࢉ͢Δ w εφοϓը૾͔Β֤ΧςΰϦͷΞΠςϜΛݕग़ͯ͠ύʔε w ͦΕͧΕͷಛྔΛ·ͱΊͯεφοϓը૾ͷදݱͱ͢Δ UPQTUPQTྖҬ͔Βநग़ͨ͠ಛྔ QBOUTQBOUTྖҬ͔Βநग़ͨ͠ಛྔ CBHTCBHTྖҬ͔Βநग़ͨ͠ಛྔ
GPPUXFBSGPPUXFBSྖҬ͔Βநग़ͨ͠ಛྔ \ εφοϓը૾ ݕग़ εφοϓը૾ͷදݱ
ݕࡧͷΈ छྨͷϞδϡʔϧ͔ΒͳΔ w ݕग़Ϟδϡʔϧεφοϓը૾Λύʔεͯ͠ಛྔΛܭࢉ͓ͯ͘͠ w ݕࡧϞδϡʔϧը૾͔ΒύʔεࡁΈεφοϓը૾Λݕࡧ͢Δ ݕग़ ݕࡧ εφοϓը૾
ΞΠςϜྖҬ ݕग़ Ϟδϡʔϧ ݕࡧ Ϟδϡʔϧ IUUQBSYJWPSHBCT
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
࣮ݧ݁Ռ1/2 ΫΤϦը૾ ݕࡧ݁Ռ
࣮ݧ݁Ռ2/2 ΫΤϦը૾ ݕࡧ݁Ռ
ίʔσΛఏҊ͢Δ w ϑΝογϣϯͰѻ͏ը૾ w Γ͍ͨ͜ͱ ࣮ݱํ๏ w $//Λ༻͍ͨಛநग़ w εφοϓը૾ͷදݱ
w ݕࡧͷΈ ࣮ݧ ·ͱΊ "HFOEB
w ը૾͔Βεφοϓը૾Λݕࡧ͢ΔΈΛఏҊ w ண༻Πϝʔδͷىʗར༻γʔϯͷى w ίʔσΟωʔτͷఏҊ w σΟʔϓϥʔχϯάΛ༻͍࣮ͯݱ w ݕग़ͱݕࡧͷΈ߹Θͤ
w ྨࣅͷධՁʹUSJQMFUMPTTΛ༻͍Δ w ༻ײ w େࡶͳಛଊ͑ΒΕ͍ͯΔ w ৎײͷΑ͏ʹࡉ͔͍ಛνϡʔχϯάޙॲཧͰٵऩ w ݕग़ͷਫ਼͕ݕࡧਫ਼ʹӨڹ͢Δ ·ͱΊ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠