WHAT ISM PHASE DOES [CI] EMISSION TRACE?
Alison Crocker ~ Reed College
Molecular cloud
Tielens &
Hollenbach
(1985)
JD Smith, Eric Pellegrini and the Beyond the Peak team
Slide 2
Slide 2 text
CAN I USE IT TO TRACE (CO-DARK) H2?
Molecular cloud
Tielens &
Hollenbach
(1985)
Alison Crocker ~ Reed College
JD Smith, Eric Pellegrini and the Beyond the Peak team
Slide 3
Slide 3 text
OUTLINE
▸ Motivation/Background
▸ Observations + theory
▸ Beyond the Peak project [CI]
▸ Empirical analysis
▸ Model-based analysis
Glover et al. 2015
Slide 4
Slide 4 text
MOTIVATION/BACKGROUND
Glover et al. 2015
[CI] lines come from fine-structure of ground state C:
3P0
3P1
3P2
62.4 K
23.6 K
0 K
E/k:
[CI] (2-1), 809 GHz, 370 μm
[CI] (1-0), 492 GHz, 609 μm
Slide 5
Slide 5 text
MOTIVATION/BACKGROUND
Glover et al. 2015
[CI] lines come from fine-structure of ground state C:
3P0
3P1
3P2
62.4 K
23.6 K
0 K
E/k:
[CI] (2-1), 809 GHz, 370 μm
[CI] (1-0), 492 GHz, 609 μm
Relatively low critical densities:
Slide 6
Slide 6 text
MOTIVATION/BACKGROUND
Glover et al. 2015
Wolfire, Hollenbach & McKee+ 2010
Slide 7
Slide 7 text
MOTIVATION/BACKGROUND
Glover et al. 2015
Wolfire, Hollenbach & McKee+ 2010
Molecular
Cloud
Diffuse medium
Slide 8
Slide 8 text
Glover+ 2015
Offner+ 2013
MOTIVATION/BACKGROUND
MORE COMPLICATED…
Slide 9
Slide 9 text
MOTIVATION/BACKGROUND
Glover+ 2015
12CO: opacity at high AV
, photodissociation at low AV
13CO: photodissociation at low AV
; good tracer of H2
at AV
= 3-10
[CI]: CO formation at high AV
; good tracer of H2
at AV
= 1.5 - 7
BEYOND THE PEAK PROJECT
Subsample of 21 galaxies from the Kingfish sample.
Slide 12
Slide 12 text
BEYOND THE PEAK PROJECT
Observed with Herschel Space Observatory’s SPIRE
Fourier Transform Spectrograph (FTS)
NGC 1266, Pellegrini et al. 2013
Slide 13
Slide 13 text
BEYOND THE PEAK PROJECT
Observed with Herschel Space Observatory’s SPIRE
Fourier Transform Spectrograph (FTS)
In mapping mode!
[CI] (2-1) maps
Slide 14
Slide 14 text
BEYOND THE PEAK PROJECT
Observed with Herschel Space Observatory’s SPIRE
Fourier Transform Spectrograph (FTS)
In mapping mode!
[CI] (2-1) maps
11 resolved in at least 2 lines
18 galaxy centers detected in
at least 2 lines
Slide 15
Slide 15 text
EMPIRICAL ANALYSIS
Line ratios of interest.
Higher excitation/lower
excitation:
[CI](2-1)/[CI](1-0)
CO(4-3)/[CI](1-0)
CO(7-6)/[CI](2-1)
EMPIRICAL ANALYSIS
What 12CO line do the [CI] lines best correlate with?
Slide 25
Slide 25 text
Glover et al. 2015
CO intensity
[CI](2-1)
intensity
J=1 J=7
J=4
40 K
18 K Dust Temperature
EMPIRICAL ANALYSIS
Slide 26
Slide 26 text
Glover et al. 2015
Dust-mass normalized CO intensity
J=1 J=7
40 K
18 K Dust Temperature
J=4
Dust-mass
normalized
[CI](2-1)
intensity
EMPIRICAL ANALYSIS
Slide 27
Slide 27 text
Glover et al. 2015
Dust-mass normalized CO intensity
Dust-mass
normalized
[CI](2-1)
intensity
J=1 J=7
40 K
18 K Dust Temperature
J=4
EMPIRICAL ANALYSIS
Slide 28
Slide 28 text
Glover et al. 2015
CO intensity
EMPIRICAL ANALYSIS
BtP
Kamenetzky+14
Combined
[CI] (2-1)
Slide 29
Slide 29 text
Glover et al. 2015
CO intensity
[CI](2-1)
intensity
J=1 J=7
J=4
EMPIRICAL ANALYSIS
Slide 30
Slide 30 text
Glover et al. 2015
CO intensity
[CI](1-0)
intensity
J=1 J=7
J=4
40 K
18 K Dust Temperature
EMPIRICAL ANALYSIS
Slide 31
Slide 31 text
Glover et al. 2015
Dust-mass normalized CO intensity
J=1 J=7
40 K
18 K Dust Temperature
J=4
Dust-mass
normalized
[CI](1-0)
intensity
EMPIRICAL ANALYSIS
EMPIRICAL
EMPIRICAL ANALYSIS CONCLUSIONS
▸ Flocculent and Barred/Grand design spirals show different
[CI] ratios
▸ Nature of galaxy center does not (alone) determine central
[CI] ratios
▸ [CI](2-1) correlates best with CO(4-3)
▸ Unclear if [CI](1-0) is a good direct tracer of any CO line
EMPIRICAL ANALYSIS
Slide 34
Slide 34 text
PDR MODEL
PDR MODEL
▸ Use PDR Toolkit from Pound, Wolfire, Kaufman
▸ Try various combinations of lines
▸ CO, [CI]
▸ [CII], [OI], [CI], FIR
▸ Parameters fit for:
▸ G0,
UV intensity
▸ n, number density
Slide 35
Slide 35 text
PDR MODEL
An example fit to a specific region’s lines.
Good fit zone.
Slide 36
Slide 36 text
PDR MODEL
An example fit to a specific region’s lines.
Good fit zone.
Ratios using
CO(7-6) are not
well fit.
Slide 37
Slide 37 text
PDR MODEL
PDR fit results to CO(2-1), CO(4-3), [CI](1-0), and [CI](2-1):
Slide 38
Slide 38 text
PDR MODEL
An example fit to a specific region’s lines.
Good fit zone.
Slide 39
Slide 39 text
PDR MODEL
PDR fit results to FIR, [CII], [OI], [CI](1-0), and [CI](2-1):
Slide 40
Slide 40 text
PDR MODEL
PDR fit results to FIR, [CII], [OI], [CI](1-0), and [CI](2-1):
PDR fit results to CO(2-1), CO(4-3), [CI](1-0), and [CI](2-1):
Slide 41
Slide 41 text
Glover et al. 2015
Simulation by Glover et al. 2015.
PDR MODEL
Slide 42
Slide 42 text
Glover et al. 2015
PDR MODEL
Slide 43
Slide 43 text
PDR MODEL CONCLUSIONS
▸ Be careful!
▸ Parameters obtained depend on what you link [CI] lines
with
▸ Multiple phases probably exist
▸ Tie of [CI] (2-1) with CO(4-3) indicates at least this [CI] line
linked to more highly excited gas (shocks, SF feedback?)
PDR MODEL