Slide 1

Slide 1 text

Constraint Composite Graph-Based Lifted Message Passing for Distributed Constraint Optimization Problems Ferdinando Fioretto1 Hong Xu2 Sven Koenig2 T. K. Satish Kumar2 fioretto@umich.edu, hongx@usc.edu, skoenig@usc.edu, tkskwork@gmail.com January 5, 2018 1University of Michigan, Ann Arbor, Michigan 48109, United States of America 2University of Southern California, Los Angeles, California 90089, United States of America The 15th International Symposium on Artificial Intelligence and Mathematics (ISAIM 2018) Fort Lauderdale, Florida, the United States of America

Slide 2

Slide 2 text

Summary For solving distributed constraint optimization problems (DCOPs), we develop CCG-Max-Sum, a distributed variant of the lifted min-sum message passing algorithm (Xu et al. 2017) based on the Constraint Composite Graph (Kumar 2008). We experimentally showed that CCG-Max-Sum outperformed other competitors. 1

Slide 3

Slide 3 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work 2

Slide 4

Slide 4 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work

Slide 5

Slide 5 text

Distributed Constraint Optimization Problems (DCOPs): Motivation Cooperative multi-agent system interact to optimize a shared goal. This can be elegantly characterized by DCOPs (Modi et al. 2005; Yeoh et al. 2012). • Coordination and resource allocation (Léauté et al. 2011; Miller et al. 2012; Zivan et al. 2015) • Sensor networks (Farinelli et al. 2008) • Device coordination in smart homes (Fioretto et al. 2017; Rust et al. 2016) 3

Slide 6

Slide 6 text

Distributed Constraint Optimization Problems (DCOPs) • There are N agents A = {a1 , a2 , . . . , aN }, each of which controls one or more variables in X = {X1 , X2 , . . . , XN }, specified by a mapping function α. No single variable is controlled by two agents. • Each variable Xi has a discrete-valued domain Di . • There are M cost functions (constraints) F = {f1 , f2 , . . . , fM }. • Each cost function fi specifies the cost for each assignment a of values to a subset xfi of the variables (denoted by fi (a|xfi )). • Find an optimal assignment a = a∗ of values to these variables so as to minimize the total cost: f(a) = M i=1 fi (a|xfi ). • Known to be NP-hard. 4

Slide 7

Slide 7 text

DCOP Example on Boolean Variables X 1 X 2 X 3 X 2 1 0 1 0 X 3 1.0 0.6 1.3 1.1 X 1 1 0 1 0 X 3 0.7 0.4 0.9 0.8 X 1 1 0 1 0 X 2 0.7 0.5 0.6 0.3 X 1 1 0 0.2 0.7 X 3 1 0 1.0 0.1 X 2 1 0 0.8 0.3 f(X1 , X2 , X3 ) = f1 (X1 ) + f2 (X2 ) + f3 (X3 ) + f12 (X1 , X2 ) + f13 (X1 , X3 ) + f23 (X2 , X3 ) 5

Slide 8

Slide 8 text

DCOP Example: Evaluate the Assignment X1 = 0, X2 = 0, X3 = 1 X 1 X 2 X 3 X 2 1 0 1 0 X 3 1.0 0.6 1.3 1.1 X 1 1 0 1 0 X 3 0.7 0.4 0.9 0.8 X 1 1 0 1 0 X 2 0.7 0.5 0.6 0.3 X 1 1 0 0.2 0.7 X 3 1 0 1.0 0.1 X 2 1 0 0.8 0.3 f(X1 = 0, X2 = 0, X3 = 1) = 0.7 + 0.3 + 1.0 + 0.5 + 1.3 + 0.9 = 4.7 (This is not an optimal solution.) 6

Slide 9

Slide 9 text

DCOP Example: Evaluate the Assignment X1 = 1, X2 = 0, X3 = 0 X 1 X 2 X 3 X 2 1 0 1 0 X 3 1.0 0.6 1.3 1.1 X 1 1 0 1 0 X 3 0.7 0.4 0.9 0.8 X 1 1 0 1 0 X 2 0.7 0.5 0.6 0.3 X 1 1 0 0.2 0.7 X 3 1 0 1.0 0.1 X 2 1 0 0.8 0.3 f(X1 = 1, X2 = 0, X3 = 0) = 0.2 + 0.3 + 0.1 + 0.7 + 0.6 + 0.7 = 2.6 This is an optimal solution. Using brute force, it requires exponential time to find. 7

Slide 10

Slide 10 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work

Slide 11

Slide 11 text

Two Forms of Structure in DCOPs X 1 X 2 X 3 X 4 X 1 1 0 1 0 X 2 0.7 0.5 0.6 0.3 Numerical Structure Graphical Structure • Graphical: Which variables are in which cost functions? • Numerical: How does each cost function relate the variables in it? How can we exploit both forms of structure computationally? 8

Slide 12

Slide 12 text

Minimum Weighted Vertex Cover (MWVC) 1 2 2 0 1 1 (a) 1 2 2 0 1 1 (b) 1 2 2 0 1 1 (c) 1 2 2 0 1 1 (d) Each vertex is associated with a non-negative weight. Sum of the weights on the vertices in the vertex cover is minimized. 9

Slide 13

Slide 13 text

Projection of Minimum Weighted Vertex Cover onto an Independent Set X 1 + X 3 X 2 X 5 X 6 X 4 X 7 ∞ 1 1 1 1 2 1 X 1 X 2 X 3 X 4 X 5 X 6 X 7 1 1 1 1 2 3 1 = necessarily present in the vertex cover 0 = necessarily absent from the vertex cover X 1 1 0 1 0 X 4 5 4 7 6 1 (Kumar 2008, Fig. 2) 10

Slide 14

Slide 14 text

Projection of MWVC onto an Independent Set Assuming Boolean variables in DCOPs • Observation: The projection of MWVC onto an independent set looks similar to a cost function. • Question 1: Can we build the lifted graphical representation for any given cost function? This is answered by (Kumar 2008). • Question 2: What is the benefit of doing so? 11

Slide 15

Slide 15 text

Lifted Representation: Example X 1 X 2 X 3 X 2 1 0 1 0 X 3 1.0 0.6 1.3 1.1 X 1 1 0 1 0 X 3 0.7 0.4 0.9 0.8 X 1 1 0 1 0 X 2 0.7 0.5 0.6 0.3 X 1 1 0 0.2 0.7 X 3 1 0 1.0 0.1 X 2 1 0 0.8 0.3 f(X1 , X2 , X3 ) = f1 (X1 ) + f2 (X2 ) + f3 (X3 ) + f12 (X1 , X2 ) + f13 (X1 , X3 ) + f23 (X2 , X3 ) 12

Slide 16

Slide 16 text

Lifted Representations: Example X 2 1 0 1 0 X 3 1.0 0.6 1.3 1.1 X 1 1 0 1 0 X 3 0.7 0.4 0.9 0.8 X 1 1 0 1 0 0.7 0.5 0.6 0.3 X 1 1 0 0.2 0.7 X 3 1 0 1.0 0.1 X 2 1 0 0.8 0.3 X 1 A 4 0.2 0.7 X 2 A 5 0.8 0.3 X 3 A 6 1.0 0.1 X 1 A 1 0.2 0.5 X 2 0.1 X 2 A 2 0.4 0.6 X 3 0.7 X 1 A 3 0.3 0.4 X 3 0.5 X 2 13

Slide 17

Slide 17 text

Constraint Composite Graph (CCG) X 1 A 1 0.7 0.5 X 2 1.3 A 2 0.6 X 3 2.2 A 3 0.4 A 4 0.7 A 5 0.3 A 6 0.1 14

Slide 18

Slide 18 text

MWVC on the Constraint Composite Graph (CCG) X 1 A 1 0.7 0.5 X 2 1.3 A 2 0.6 X 3 2.2 A 3 0.4 A 4 0.7 A 5 0.3 A 6 0.1 An MWVC of the CCG encodes an optimal solution of the original DCOP! 15

Slide 19

Slide 19 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work

Slide 20

Slide 20 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work

Slide 21

Slide 21 text

Max-Sum and CCG-Max-Sum • Max-Sum (Farinelli et al. 2008; Stranders et al. 2009) • is a distributed variant of belief propagation • has information passed locally between variables and constraints • CCG-Max-Sum Algorithm • Perform message passing iterations on the MWVC problem instance of the CCG • Messages are passed between adjacent vertices • Is a distributed variant of the lifted min-sum message passing algorithm (Xu et al. 2017) • Despite the names, since our goal is to minimize the total cost, all max operators are replaced by min operators. 16

Slide 22

Slide 22 text

Operations on Tables: Min minX1 X1 X2 0 1 0 1 2 1 4 3 = X1 0 1 1 3 17

Slide 23

Slide 23 text

Operations on Tables: Sum X1 X2 0 1 0 1 2 1 4 3 + X1 0 5 1 6 = X1 X2 0 1 0 1 + 5 = 6 2 + 5 = 7 1 4 + 6 = 10 3 + 6 = 9 18

Slide 24

Slide 24 text

Max-Sum • A message is a table over the single variable, which is the sender or the receiver. • A vertex of k neighbors 1. applies sum on the messages from its k − 1 neighbors and internal cost function, and 2. applies min on the summation result and sends the resulting table to its kth neighbor. 19

Slide 25

Slide 25 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 0 ← − − − − − − − − − − νX2→C23 = 0, 0 − − − − − − − − − − → ˆ νC23 →X3 = 0, 0 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 0 − − − − − − − − − − → νX2 →C12 = 0, 0 ← − − − − − − − − − − ˆ νC12→X1 = 0, 0 X1 X2 0 1 0 2 3 1 1 2 (a) C12 X2 X3 0 1 0 1 4 1 2 2 (b) C23 20–1

Slide 26

Slide 26 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 1 ← − − − − − − − − − − νX2→C23 = 0, 0 − − − − − − − − − − → ˆ νC23 →X3 = 0, 0 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 0 − − − − − − − − − − → νX2 →C12 = 0, 0 ← − − − − − − − − − − ˆ νC12→X1 = 0, 0 X1 X2 0 1 0 2 3 1 1 2 (a) C12 X2 X3 0 1 0 1 4 1 2 2 (b) C23 20–2

Slide 27

Slide 27 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 1 ← − − − − − − − − − − νX2→C23 = 0, 1 − − − − − − − − − − → ˆ νC23 →X3 = 0, 0 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 0 − − − − − − − − − − → νX2 →C12 = 0, 0 ← − − − − − − − − − − ˆ νC12→X1 = 0, 0 X1 X2 0 1 0 2 3 1 1 2 (a) C12 X2 X3 0 1 0 1 4 1 2 2 (b) C23 20–3

Slide 28

Slide 28 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 1 ← − − − − − − − − − − νX2→C23 = 0, 1 − − − − − − − − − − → ˆ νC23 →X3 = 0, 2 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 0 − − − − − − − − − − → νX2 →C12 = 0, 0 ← − − − − − − − − − − ˆ νC12→X1 = 0, 0 X1 X2 0 1 0 2 3 1 1 2 (a) C12 X2 X3 0 1 0 1 4 1 2 2 (b) C23 20–4

Slide 29

Slide 29 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 1 ← − − − − − − − − − − νX2→C23 = 0, 1 − − − − − − − − − − → ˆ νC23 →X3 = 0, 2 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 1 − − − − − − − − − − → νX2 →C12 = 0, 0 ← − − − − − − − − − − ˆ νC12→X1 = 0, 0 X1 X2 0 1 0 2 3 1 1 2 (a) C12 X2 X3 0 1 0 1 4 1 2 2 (b) C23 20–5

Slide 30

Slide 30 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 1 ← − − − − − − − − − − νX2→C23 = 0, 1 − − − − − − − − − − → ˆ νC23 →X3 = 0, 2 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 1 − − − − − − − − − − → νX2 →C12 = 0, 1 ← − − − − − − − − − − ˆ νC12→X1 = 0, 0 X1 X2 0 1 0 2 3 1 1 2 (a) C12 X2 X3 0 1 0 1 4 1 2 2 (b) C23 20–6

Slide 31

Slide 31 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 1 ← − − − − − − − − − − νX2→C23 = 0, 1 − − − − − − − − − − → ˆ νC23 →X3 = 0, 2 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 1 − − − − − − − − − − → νX2 →C12 = 0, 1 ← − − − − − − − − − − ˆ νC12→X1 = 1, 0 X1 X2 0 1 0 2 3 1 1 2 (a) C12 X2 X3 0 1 0 1 4 1 2 2 (b) C23 20–7

Slide 32

Slide 32 text

Max-Sum X1 C12 X2 C23 X3 νX1→C12 = 0, 0 − − − − − − − − − − → − − − − − − − − − − → νX3 →C23 = 0, 0 ˆ νC12 →X2 = 0, 1 ← − − − − − − − − − − νX2→C23 = 0, 1 − − − − − − − − − − → ˆ νC23 →X3 = 0, 2 ← − − − − − − − − − − ← − − − − − − − − − − ˆ νC23→X2 = 0, 1 − − − − − − − − − − → νX2 →C12 = 0, 1 ← − − − − − − − − − − ˆ νC12→X1 = 1, 0 • X1 = 1 minimizes ˆ νC12→X1 (X1 ) • X2 = 0 minimizes ˆ νC12→X2 (X2 ) + ˆ νC23→X2 (X2 ) • X3 = 0 minimizes ˆ νC23→X3 (X3 ) • Optimal solution: X1 = 1, X2 = 0, X3 = 0 20–8

Slide 33

Slide 33 text

CCG-Max-Sum: Finding an MWVC on the CCG • Treat MWVC problems on the CCG as DCOPs and apply Max-Sum on them. • Messages are simplified passed between adjacent vertices. µi u→v = max    wu − t∈N(u)\{v} µi−1 t→u , 0    , 21

Slide 34

Slide 34 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work

Slide 35

Slide 35 text

Motivation: Kernelization and the Nemhauser-Trotter Reduction • The MWVC problem is known to be NP-hard. • To solve such a problem, an algorithm that reduces the size of the problem in polynomial time is desirable. • A kernelization method is one such algorithm. • The Nemhauser-Trotter (NT) Reduction is one kernelization method for the MWVC problem. • The Constraint Composite Graph enables the use of the NT reduction. 22

Slide 36

Slide 36 text

The Nemhauser-Trotter (NT) Reduction A C D B w 4 w 3 w 1 w 2 A(w 1 ) B(w 2 ) C(w 3 ) D(w 4 ) A'(w 1 ) C'(w 3 ) D'(w 4 ) B'(w 2 ) A(w 1 ) B(w 2 ) C(w 3 ) D(w 4 ) A'(w 1 ) C'(w 3 ) D'(w 4 ) B'(w 2 ) A is in the minimum weighted VC B is not in the minimum weighted VC C and D are in the Kernel 23

Slide 37

Slide 37 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work

Slide 38

Slide 38 text

Experimental Setup • Algorithms • CCG-Max-Sum • CCG-Max-Sum-k: CCG-Max-Sum + NT reduction • Max-Sum (Farinelli et al. 2008; Stranders et al. 2009) • DSA (Zhang et al. 2005) • Benchmark instances • Grid networks (2-d 10 × 10 grids) • Scale-free networks (Barabási-Albert model (Barabási et al. 1999)), m = m0 = 2 • Random networks (Erdős-Rényi model (Erdős et al. 1959)), p1 = 0.4 and p1 = 0.8, max arity = 4 • 30 benchmark instances in each instance set, 100 agents/variables • Costs are uniformly random numbers from 1 to 100. 24

Slide 39

Slide 39 text

Max-Sum CCG-Max-Sum CCG-Max-Sum-k DSA 100 101 102 103 Iterations 6000 6500 7000 7500 8000 8500 9000 9500 Average Cost (a) grid networks 100 101 102 103 Iterations 7500 8000 8500 9000 9500 10000 10500 Average Cost (b) scale-free networks 100 101 102 103 Iterations 46000 47000 48000 49000 50000 Average Cost (c) low density random networks (p1 = 0.4) 100 101 102 103 Iterations 93000 94000 95000 96000 97000 98000 99000 100000 101000 Average Cost (d) high-density random networks (p1 = 0.8) 5,000 iterations for each benchmark instance. 25

Slide 40

Slide 40 text

Agenda Distributed Constraint Optimization Problems (DCOPs) The Constraint Composite Graph (CCG) CCG-Max-Sum Max-Sum and CCG-Max-Sum The Nemhauser-Trotter (NT) Reduction Experimental Evaluation Conclusion and Future Work

Slide 41

Slide 41 text

Conclusion and Future Work • Conclusion • We developed CCG-Max-Sum, a variant of the lifted min-sum message passing algorithm (Xu et al. 2017), for solving DCOPs. • We combined NT reduction with CCG-Max-Sum. • We experimentally showed the advantage of CCG-Max-Sum. • Future Work • Investigate mixed soft and hard constraints • Incorporate Crown reduction (Chlebík et al. 2008) 26

Slide 42

Slide 42 text

References I Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random Networks”. In: Science 286.5439 (1999), pp. 509–512. Miroslav Chlebík and Janka Chlebíková. “Crown Reductions for the Minimum Weighted Vertex Cover Problem”. In: Discrete Applied Mathematics 156.3 (2008), pp. 292–312. P. Erdős and A. Rényi. “On Random Graphs I.”. In: Publicationes Mathematicae 6 (1959), pp. 290–297. Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas Jennings. “Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm”. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2008, pp. 639–646. Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. “A Multiagent System Approach to Scheduling Devices in Smart Homes”. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2017, pp. 981–989.

Slide 43

Slide 43 text

References II T. K. Satish Kumar. “A Framework for Hybrid Tractability Results in Boolean Weighted Constraint Satisfaction Problems”. In: Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP). 2008, pp. 282–297. Thomas Léauté and Boi Faltings. “Distributed Constraint Optimization Under Stochastic Uncertainty”. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 2011, pp. 68–73. Sam Miller, Sarvapali D Ramchurn, and Alex Rogers. “Optimal decentralised dispatch of embedded generation in the smart grid”. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2012, pp. 281–288. Pragnesh Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. “ADOPT: Asynchronous Distributed Constraint Optimization with Quality Guarantees”. In: Artificial Intelligence 161.1–2 (2005), pp. 149–180. Pierre Rust, Gauthier Picard, and Fano Ramparany. “Using Message-Passing DCOP Algorithms to Solve Energy-Efficient Smart Environment Configuration Problems”. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2016, pp. 468–474.

Slide 44

Slide 44 text

References III Ruben Stranders, Alessandro Farinelli, Alex Rogers, and Nick R Jennings. “Decentralised coordination of continuously valued control parameters using the Max-Sum algorithm”. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS). 2009, pp. 601–608. Hong Xu, T. K. Satish Kumar, and Sven Koenig. “The Nemhauser-Trotter Reduction and Lifted Message Passing for the Weighted CSP”. In: Proceedings of the International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR). 2017, pp. 387–402. doi: 10.1007/978-3-319-59776-8_31. William Yeoh and Makoto Yokoo. “Distributed Problem Solving”. In: AI Magazine 33.3 (2012), pp. 53–65. Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenberg. “Distributed Stochastic Search and Distributed Breakout: Properties, Comparison and Applications to Constraint Optimization Problems in Sensor Networks”. In: Artificial Intelligence 161.1–2 (2005), pp. 55–87.

Slide 45

Slide 45 text

References IV Roie Zivan, Harel Yedidsion, Steven Okamoto, Robin Glinton, and Katia Sycara. “Distributed Constraint Optimization for Teams of Mobile Sensing Agents”. In: Autonomous Agents and Multi-Agent Systems 29.3 (2015), pp. 495–536.