Slide 51
Slide 51 text
参考文献
• J. C. Reinhold, Y. He, S. Han, Y. Chen, D. Gao, J. Lee, J. L. Prince, and A. Carass, “Validating uncertainty in medical
image translation,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020, pp. 95–98.
• T. Nair, D. Precup, D. L. Arnold, and T. Arbel, “Exploring uncertainty measures in deep networks for multiple sclerosis
lesion detection and segmentation,” Medical image analysis, vol. 59, p. 101557, 2020.
• Kendall, Alex, Vijay Badrinarayanan, and Roberto Cipolla. "Bayesian segnet: Model uncertainty in deep convolutional
encoder-decoder architectures for scene understanding." arXiv preprint arXiv:1511.02680 (2015).
• Sedlmeier, Andreas, et al. "Uncertainty-based out-of-distribution classification in deep reinforcement learning." arXiv
preprint arXiv:2001.00496 (2019).
• Ruβwurm, Marc, et al. "Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent
Models." IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
• J. Gawlikowski, S. Saha, A. Kruspe, and X. X. Zhu, “Out-of- distribution detection in satellite image classification,” in
RobustML workshop at ICLR 2021. ICRL, 2021, pp. 1–5.
• J. Zeng, A. Lesnikowski, and J. M. Alvarez, “The relevance of bayesian layer positioning to model uncertainty in deep
bayesian active learning,” arXiv preprint arXiv:1811.12535, 2018.
• Baier, Lucas, et al. "Detecting Concept Drift With Neural Network Model Uncertainty." arXiv preprint
arXiv:2107.01873 (2021).
51