Chen, D. Gao, J. Lee, J. L. Prince, and A. Carass, “Validating uncertainty in medical image translation,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020, pp. 95–98. • T. Nair, D. Precup, D. L. Arnold, and T. Arbel, “Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation,” Medical image analysis, vol. 59, p. 101557, 2020. • Kendall, Alex, Vijay Badrinarayanan, and Roberto Cipolla. "Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding." arXiv preprint arXiv:1511.02680 (2015). • Sedlmeier, Andreas, et al. "Uncertainty-based out-of-distribution classification in deep reinforcement learning." arXiv preprint arXiv:2001.00496 (2019). • Ruβwurm, Marc, et al. "Model and Data Uncertainty for Satellite Time Series Forecasting with Deep Recurrent Models." IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE. • J. Gawlikowski, S. Saha, A. Kruspe, and X. X. Zhu, “Out-of- distribution detection in satellite image classification,” in RobustML workshop at ICLR 2021. ICRL, 2021, pp. 1–5. • J. Zeng, A. Lesnikowski, and J. M. Alvarez, “The relevance of bayesian layer positioning to model uncertainty in deep bayesian active learning,” arXiv preprint arXiv:1811.12535, 2018. • Baier, Lucas, et al. "Detecting Concept Drift With Neural Network Model Uncertainty." arXiv preprint arXiv:2107.01873 (2021). 51
Networks--a Tutorial for Deep Learning Users." arXiv preprint arXiv:2007.06823 (2020). • A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of in-domain uncertainty estimation and ensembling in deep learning,” in International Conference on Learning Representations, 2020. • Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2019). Deep evidential regression. arXiv preprint arXiv:1910.02600. • Hendrycks, Dan, et al. "Unsolved Problems in ML Safety." arXiv preprint arXiv:2109.13916 (2021). • Jishnu Mukhoti, Joost van Amersfoort, Philip Torr and Yarin Gal. “Deep Deterministic Uncertainty for Semantic Segmentation” ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning. • Lavin, Alexander, et al. "Technology readiness levels for machine learning systems." arXiv preprint arXiv:2101.03989 (2021). • Studer, Stefan, et al. "Towards CRISP-ML (Q): a machine learning process model with quality assurance methodology." Machine Learning and Knowledge Extraction 3.2 (2021): 392-413. • Gawlikowski, Jakob, et al. "A survey of uncertainty in deep neural networks." arXiv preprint arXiv:2107.03342 (2021). 52