Slide 1

Slide 1 text

@lcolladotor lcolladotor.github.io lcolladotor.github.io/bioc_team_ds Lessons Learned from Spatially-Resolved Transcriptomics of Postmortem Human Brain Data Projects Leonardo Collado Torres, Investigator Festival of Genomics & Biodata October 3 2023 Slides available at speakerdeck.com/lcolladotor

Slide 2

Slide 2 text

doi.org/10.1016/j.biopsych.2020.06.005 Michael Gandal @mikejg84 Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders

Slide 3

Slide 3 text

Background: Human DLPFC 3 slideshare.net Louise A Huuki-Myers @lahuuki

Slide 4

Slide 4 text

Zoom in: snRNA-seq → deconvolution of bulk RNA-seq Matthew N Tran @mattntran Kristen R Maynard @kr_maynard Louise A Huuki-Myers @lahuuki Keri Martinowich @martinowk Stephanie C Hicks @stephaniehicks

Slide 5

Slide 5 text

What is Deconvolution? ● Inferring the composition of different cell types in a bulk RNA-seq data Louise A Huuki-Myers @lahuuki

Slide 6

Slide 6 text

Sean Maden @MadenSean Sang Ho Kwon @sanghokwon17 #deconvochallenge doi.org/10.48550/arXiv.2305.06501

Slide 7

Slide 7 text

#deconvochallenge Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single cell RNA-sequencing datasets doi.org/10.48550/arXiv.2305.06501 Sean Maden @MadenSean

Slide 8

Slide 8 text

Zoom in: spatial omics Kristen R Maynard @kr_maynard Keri Martinowich @martinowk Stephanie C Hicks @stephaniehicks Andrew E Jaffe @andrewejaffe Stephanie C Page @CerceoPage

Slide 9

Slide 9 text

Visium Platform for Spatial Gene Expression Image from 10x Genomics - A slide contains 4 capture areas, each full of thousands of 55um-wide “spots” (often containing 1-10 cells) - Unique barcodes in each spot bind to particular genes; after sequencing, gene expression can be tied back to exact spots, forming a spatial map Kristen R. Maynard 9

Slide 10

Slide 10 text

bioconductor.org/packages/spatialLIBD Pardo et al, 2022 DOI 10.1186/s12864-022-08601-w Maynard, Collado-Torres, 2021 DOI 10.1038/s41593-020-00787-0 Brenda Pardo Abby Spangler @PardoBree @abspangler Louise A. Huuki-Myers @lahuuki

Slide 11

Slide 11 text

2 pairs spatial adjacent replicates x subject = 12 sections 11 Subject 1 Subject 2 Subject 3 Adjacent spatial replicates (0μm) Adjacent spatial replicates (300μm) PCP4 Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 12

Slide 12 text

“Pseudo-bulking” collapses data: spot to layer level 12 Maynard, Collado-Torres, et al, Nat Neuro, 2021

Slide 13

Slide 13 text

DOI: 10.1038/s41593-020-00787-0 twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29 Andrew E Jaffe @andrewejaffe Kristen R Maynard @kr_maynard Keri Martinowich @martinowk

Slide 14

Slide 14 text

DOI: 10.1038/s41593-020-00787-0 twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29 DOI 10.1093/bioinformatics/btac299 Since Feb 2020 spatialLIBD::fetch_data() provides access to SpatialExperiment R/Bioconductor objects Stephanie C Hicks @stephaniehicks Lukas M Weber @lmweber

Slide 15

Slide 15 text

DOI: 10.1038/s41593-020-00787-0 twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29 twitter.com/CrowellHL/status/1597579271945715717 DOI 10.1093/bioinformatics/btac299 Since Feb 2020 spatialLIBD::fetch_data() provides access to SpatialExperiment R/Bioconductor objects

Slide 16

Slide 16 text

#spatialDLPFC 16 doi.org/10.1101/2023.02.15.528722 Louise A Huuki-Myers @lahuuki Abby Spangler @abspangler Nicholas J Eagles @Nick-Eagles (GitHub)

Slide 17

Slide 17 text

BayesSpace clustering with batch correction worked best for multiple samples 17 doi.org/10.1101/2023.02.15.528722 twitter.com/CrowellHL/status/1597579271945715717

Slide 18

Slide 18 text

Spatial Registration Adds Anatomical Context ● Validate detection of laminar structure ● Correlate enrichment t-statistics for top marker genes of reference ○ Cluster vs. manual annotation ● Annotate with strongly associated histological layer 18 Sp k D d ~L doi.org/10.1101/2023.02.15.528722

Slide 19

Slide 19 text

Spatial Registration of Spatial Domains ● Map SpDs to Maynard et al. manual annotated layers ● Highlight most strongly associated histological layer to add biological context 19 doi.org/10.1101/2023.02.15.528722

Slide 20

Slide 20 text

Identify Layer Associated Neuron Populations 20 ● Apply Spatial Registration with manual layers ● 13 layer-level cell types ○ Assign Excitatory Neurons histological layers ○ Pool other cell type groups Kelsey D Montgomery

Slide 21

Slide 21 text

Spot Deconvolution 21 Cell 1 Cell 2 … Cell N Gene 1 0 0 … 0 Gene 2 2 5 … 3 … … … … … Gene i 1 0 … 0 Spot 1 Spot 2 … Spot M Gene 1 1 0 … 3 Gene 2 0 1 … 0 … … … … … Gene j 4 2 … 2 Astro Excit … Inhib Spot 1 1 1 … 1 Spot 2 … … … … … … Spot N 1 0 … 2 Single- Nucleus Spatial Deconvolved Results Spot 1 Nicholas J Eagles @Nick-Eagles (GitHub)

Slide 22

Slide 22 text

Existing Spot Deconvolution Software - Explored 3 novel software methods from the literature Software name Overall approach Input Cell Counts Output Tangram (Biancalani et al.) Mapping individual cells Every spot Integer counts Cell2location (Kleshchevnikov et al.) Matching gene-expression profile Average across spots Decimal counts SPOTlight (Elosua-Bayes et al.) Matching gene-expression profile Not used Proportions 22 Excit L5 Counts

Slide 23

Slide 23 text

Visium Spatial Proteogenomics (SPG) Images as an Orthogonal Measurement 23

Slide 24

Slide 24 text

Visium Spatial Proteogenomics (Visium-SPG) Visium-SPG = Visium SRT + immunofluorescence (using identical tissue samples) Sang Ho Kwon @sanghokwon17

Slide 25

Slide 25 text

Visium Spatial Proteogenomics (Visium-SPG) - Gene expression captured like ordinary Visium - Multi-channel fluorescent images captured of the same tissue - Channels measure proteins marking for specific cell types Kristen R. Maynard 25 Sang Ho Kwon Visium-SPG = Visium SRT + immunofluorescence (using identical tissue samples) Fluorescent Protein Cell Type TMEM119 Microglia Neun Neurons OLIG2 Oligodendrocytes GFAP Astrocytes

Slide 26

Slide 26 text

26 Max across layers Not max Benchmark Results: Leverage Prior Knowledge Nicholas @Nick-Eagl

Slide 27

Slide 27 text

Benchmark Results: Leverage Prior Knowledge 27

Slide 28

Slide 28 text

Benchmark Summary 28 Metric Tangram Cell2location SPOTlight Metric Type Avg. cor (spot-level) 0.31 0.30 0.21 Orthogonal measurements Avg. RMSE (spot-level) 1.35 1.24 1.3 Orthogonal measurements Overall prop.: (KL Div.) 0.44 0.49 0.41 Orthogonal measurements Overall prop.: (cor.) 0.46 0.37 0.47 Orthogonal measurements Overall prop.: (RMSE) 3020 3890 3040 Orthogonal measurements Histological mapping 0.69 0.77 0.23 Leverage known biology Broad vs. layer (cor.) 1.00 0.77 -0.36 Self-consistency of results Broad vs. layer (RMSE) 102 4200 4220 Self-consistency of results Nicholas J Eagles @Nick-Eagles (GitHub)

Slide 29

Slide 29 text

How Spot Deconvolution Results Were Used A. Better characterize unsupervised spatial domains B. Cell-cell communication; cell-type-informed ligand-receptor interactions in the context of schizophrenia risk A 29 Boyi Guo Melissa Grant-Peters

Slide 30

Slide 30 text

Visium spatial clustering works for variables with high % variance explained. But what about other ones? DOI: 10.1038/s41593-020-00787-0

Slide 31

Slide 31 text

twitter.com/sanghokwon17/status/1650589385379962881 from 2023-04-24 Sang Ho Kwon @sanghokwon17 DOI: 10.1101/2023.04.20.537710 #Visium_SPG_AD

Slide 32

Slide 32 text

Experimental design & study overview Braak V-VI & CERAD frequent Sang Ho Kwon

Slide 33

Slide 33 text

AD pathology signal is too small to detect by spatially-resolved gene expression alone research.libd.org/Visium_SPG_AD/

Slide 34

Slide 34 text

Identifying transcriptional signatures of AD-related neuropathology Sang Ho Kwon

Slide 35

Slide 35 text

Some challenges ⚠ with Visium 35

Slide 36

Slide 36 text

sc/snRNA-seq QC metrics such as # detected genes, # UMI, mitochondria expression % are likely biologically related!

Slide 37

Slide 37 text

Prashanthi Ravichandran @prashanthi-ravichandran (GH) Artifacts in general are normalized away by library size, though there are caveats

Slide 38

Slide 38 text

Diffusion issues: could be related to permeabilization step

Slide 39

Slide 39 text

Having more data is useful to provide context! Here 4 new samples have low sequencing saturation (outliers) but are within range of good samples from other studies

Slide 40

Slide 40 text

Having more data is useful to provide context! Those 4 samples have great median UMI counts per spot ^_^

Slide 41

Slide 41 text

Software keeps evolving and as leaders in the field we aim to use the best methods 41 Moses, L., Pachter, L. Museum of spatial transcriptomics. Nat Methods 19, 534–546 (2022). https://doi.org/10.1038/s41592-022-01409-2

Slide 42

Slide 42 text

The Development Process - Making a module - New, experimental software can change dramatically (function and syntax) between versions - Promotes collaboration by allowing two researchers to share exact code and instantly run software without special set-up SpatialExperiment release 3.14 SpatialExperiment devel 3.15 module load tangram/1.0.2 module load cell2location/0.8a0 module load spagcn/1.2.0 https://github.com/LieberInstitute/jhpce_mod_source https://github.com/LieberInstitute/jhpce_module_config Nicholas J Eagles @Nick-Eagles (GitHub)

Slide 43

Slide 43 text

The Development Process - Regular interaction with software authors to clarify functionality and report bugs - Documentation for code and author responsiveness on GitHub can be critical in successfully applying software to our data Nicholas J Eagles @Nick-Eagles (GitHub)

Slide 44

Slide 44 text

Documentation + wrapper functions + tests (GitHub Actions + Bioconductor) 44 bioconductor.org/packages/spatialLIBD

Slide 45

Slide 45 text

More challenges ahead Working with multiple capture areas per tissue Nicholas J Eagles @Nick-Eagles (GitHub) Prashanthi Ravichandran @prashanthi-ravichandran (GH) Spot diameter error: ~1.8 → ~1.1 Another pair: ~2.8 → ~0.76

Slide 46

Slide 46 text

lcolladotor.github.io/#projects ● Every assay has caveats ● We re-use tricks: think adding 0, multiplying by 1 ● It nearly always takes a team ● Data sharing accelerates science + democratizes access to it ● Zooming in allows us to reduce the heterogeneity ● We can learn from each other: from uniformly processing our data & re-using it → replicate / validate?

Slide 47

Slide 47 text

@MadhaviTippani Madhavi Tippani @HeenaDivecha Heena R Divecha @lmwebr Lukas M Weber @stephaniehicks Stephanie C Hicks @abspangler Abby Spangler @martinowk Keri Martinowich @CerceoPage Stephanie C Page @kr_maynard Kristen R Maynard @lcolladotor Leonardo Collado-Torres @Nick-Eagles (GH) Nicholas J Eagles Kelsey D Montgomery Sang Ho Kwon Image Analysis Expression Analysis Data Generation Thomas M Hyde @lahuuki Louise A Huuki-Myers @BoyiGuo Boyi Guo @mattntran Matthew N Tran @sowmyapartybun Sowmya Parthiban Slides available at speakerdeck.com /lcolladotor + Many more LIBD, JHU, and external collaborators @mgrantpeters Melissa Grant-Peters @prashanthi-ravichandran (GH) Prashanthi Ravichandran

Slide 48

Slide 48 text

lcolladotor.github.io @lcolladotor