@lcolladotor
lcolladotor.github.io
lcolladotor.github.io/bioc_team_ds
Lessons Learned from
Spatially-Resolved
Transcriptomics of Postmortem
Human Brain Data Projects
Leonardo Collado Torres, Investigator
Festival of Genomics & Biodata
October 3 2023
Slides available at speakerdeck.com/lcolladotor
Slide 2
Slide 2 text
doi.org/10.1016/j.biopsych.2020.06.005
Michael Gandal
@mikejg84
Transcriptomic
Insight Into the
Polygenic
Mechanisms
Underlying
Psychiatric
Disorders
Slide 3
Slide 3 text
Background: Human DLPFC
3
slideshare.net
Louise A Huuki-Myers
@lahuuki
Slide 4
Slide 4 text
Zoom in:
snRNA-seq → deconvolution of
bulk RNA-seq
Matthew N Tran
@mattntran
Kristen R Maynard
@kr_maynard
Louise A Huuki-Myers
@lahuuki
Keri Martinowich
@martinowk
Stephanie C Hicks
@stephaniehicks
Slide 5
Slide 5 text
What is Deconvolution?
● Inferring the composition of
different cell types in a bulk
RNA-seq data
Louise A Huuki-Myers
@lahuuki
Slide 6
Slide 6 text
Sean Maden
@MadenSean
Sang Ho Kwon
@sanghokwon17
#deconvochallenge doi.org/10.48550/arXiv.2305.06501
Slide 7
Slide 7 text
#deconvochallenge
Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes
using single cell RNA-sequencing datasets
doi.org/10.48550/arXiv.2305.06501
Sean Maden
@MadenSean
Slide 8
Slide 8 text
Zoom in: spatial omics
Kristen R Maynard
@kr_maynard
Keri Martinowich
@martinowk
Stephanie C Hicks
@stephaniehicks
Andrew E Jaffe
@andrewejaffe
Stephanie C Page
@CerceoPage
Slide 9
Slide 9 text
Visium Platform for Spatial Gene Expression
Image from 10x Genomics
- A slide contains 4 capture areas, each full of thousands of 55um-wide “spots”
(often containing 1-10 cells)
- Unique barcodes in each spot bind to particular genes; after sequencing, gene
expression can be tied back to exact spots, forming a spatial map
Kristen R. Maynard
9
Slide 10
Slide 10 text
bioconductor.org/packages/spatialLIBD
Pardo et al, 2022 DOI 10.1186/s12864-022-08601-w
Maynard, Collado-Torres, 2021 DOI 10.1038/s41593-020-00787-0
Brenda Pardo Abby Spangler
@PardoBree @abspangler
Louise A. Huuki-Myers
@lahuuki
“Pseudo-bulking” collapses data: spot to layer level
12
Maynard, Collado-Torres, et al, Nat Neuro, 2021
Slide 13
Slide 13 text
DOI: 10.1038/s41593-020-00787-0
twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29
Andrew E Jaffe
@andrewejaffe
Kristen R Maynard
@kr_maynard
Keri Martinowich
@martinowk
Slide 14
Slide 14 text
DOI: 10.1038/s41593-020-00787-0
twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29
DOI 10.1093/bioinformatics/btac299
Since Feb 2020
spatialLIBD::fetch_data()
provides access to
SpatialExperiment
R/Bioconductor objects
Stephanie C Hicks
@stephaniehicks
Lukas M Weber
@lmweber
Slide 15
Slide 15 text
DOI: 10.1038/s41593-020-00787-0
twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29
twitter.com/CrowellHL/status/1597579271945715717
DOI 10.1093/bioinformatics/btac299
Since Feb 2020
spatialLIBD::fetch_data()
provides access to
SpatialExperiment
R/Bioconductor objects
Slide 16
Slide 16 text
#spatialDLPFC
16
doi.org/10.1101/2023.02.15.528722
Louise A
Huuki-Myers
@lahuuki
Abby Spangler
@abspangler
Nicholas J Eagles
@Nick-Eagles
(GitHub)
Slide 17
Slide 17 text
BayesSpace clustering with batch correction worked
best for multiple samples
17
doi.org/10.1101/2023.02.15.528722
twitter.com/CrowellHL/status/1597579271945715717
Slide 18
Slide 18 text
Spatial Registration Adds Anatomical Context
● Validate detection of laminar structure
● Correlate enrichment t-statistics for top marker genes of reference
○ Cluster vs. manual annotation
● Annotate with strongly associated histological layer
18
Sp
k
D
d
~L
doi.org/10.1101/2023.02.15.528722
Slide 19
Slide 19 text
Spatial Registration of
Spatial Domains
● Map SpDs to Maynard et al. manual
annotated layers
● Highlight most strongly associated
histological layer to add biological
context
19
doi.org/10.1101/2023.02.15.528722
Slide 20
Slide 20 text
Identify Layer Associated Neuron Populations
20
● Apply Spatial Registration with
manual layers
● 13 layer-level cell types
○ Assign Excitatory Neurons
histological layers
○ Pool other cell type groups
Kelsey D Montgomery
Existing Spot Deconvolution Software
- Explored 3 novel software methods from the literature
Software name Overall
approach
Input Cell
Counts
Output
Tangram
(Biancalani et al.)
Mapping
individual cells
Every spot Integer counts
Cell2location
(Kleshchevnikov et al.)
Matching
gene-expression
profile
Average across
spots
Decimal
counts
SPOTlight
(Elosua-Bayes et al.)
Matching
gene-expression
profile
Not used Proportions
22
Excit L5 Counts
Slide 23
Slide 23 text
Visium Spatial
Proteogenomics
(SPG) Images as an
Orthogonal
Measurement
23
Slide 24
Slide 24 text
Visium Spatial Proteogenomics (Visium-SPG)
Visium-SPG = Visium SRT + immunofluorescence
(using identical tissue samples)
Sang Ho Kwon
@sanghokwon17
Slide 25
Slide 25 text
Visium Spatial Proteogenomics (Visium-SPG)
- Gene expression captured like ordinary Visium
- Multi-channel fluorescent images captured of the
same tissue
- Channels measure proteins marking for specific cell types
Kristen R. Maynard
25 Sang Ho Kwon
Visium-SPG = Visium SRT + immunofluorescence
(using identical tissue samples)
Fluorescent Protein Cell Type
TMEM119 Microglia
Neun Neurons
OLIG2 Oligodendrocytes
GFAP Astrocytes
Slide 26
Slide 26 text
26
Max across layers
Not max
Benchmark Results:
Leverage Prior Knowledge
Nicholas
@Nick-Eagl
How Spot
Deconvolution
Results Were
Used
A. Better characterize unsupervised
spatial domains
B. Cell-cell communication;
cell-type-informed ligand-receptor
interactions in the context of
schizophrenia risk
A
29
Boyi Guo Melissa Grant-Peters
Slide 30
Slide 30 text
Visium spatial clustering works for variables with high %
variance explained. But what about other ones?
DOI: 10.1038/s41593-020-00787-0
Slide 31
Slide 31 text
twitter.com/sanghokwon17/status/1650589385379962881 from 2023-04-24
Sang Ho Kwon
@sanghokwon17
DOI: 10.1101/2023.04.20.537710
#Visium_SPG_AD
Slide 32
Slide 32 text
Experimental design & study overview
Braak V-VI & CERAD frequent
Sang Ho Kwon
Slide 33
Slide 33 text
AD pathology signal is too small to detect by
spatially-resolved gene expression alone research.libd.org/Visium_SPG_AD/
Slide 34
Slide 34 text
Identifying transcriptional signatures of AD-related neuropathology
Sang Ho Kwon
Slide 35
Slide 35 text
Some challenges ⚠ with
Visium
35
Slide 36
Slide 36 text
sc/snRNA-seq QC metrics such as # detected genes, # UMI,
mitochondria expression % are likely biologically related!
Slide 37
Slide 37 text
Prashanthi Ravichandran
@prashanthi-ravichandran (GH)
Artifacts in general are normalized away by library size,
though there are caveats
Slide 38
Slide 38 text
Diffusion issues: could be related to
permeabilization step
Slide 39
Slide 39 text
Having more data is useful to provide context!
Here 4 new samples have low sequencing saturation (outliers) but
are within range of good samples from other studies
Slide 40
Slide 40 text
Having more data is useful to provide context!
Those 4 samples have great median UMI counts per spot ^_^
Slide 41
Slide 41 text
Software keeps evolving and as leaders in the field we aim to
use the best methods
41
Moses, L., Pachter, L. Museum of spatial transcriptomics. Nat Methods 19,
534–546 (2022). https://doi.org/10.1038/s41592-022-01409-2
Slide 42
Slide 42 text
The Development Process
- Making a module
- New, experimental software can change dramatically (function and
syntax) between versions
- Promotes collaboration by allowing two researchers to share exact
code and instantly run software without special set-up
SpatialExperiment release 3.14
SpatialExperiment devel 3.15
module load tangram/1.0.2
module load cell2location/0.8a0
module load spagcn/1.2.0
https://github.com/LieberInstitute/jhpce_mod_source
https://github.com/LieberInstitute/jhpce_module_config
Nicholas J Eagles
@Nick-Eagles (GitHub)
Slide 43
Slide 43 text
The Development Process
- Regular interaction with software
authors to clarify functionality and
report bugs
- Documentation for code and author
responsiveness on GitHub can be
critical in successfully applying
software to our data
Nicholas J Eagles
@Nick-Eagles (GitHub)
More challenges
ahead
Working with multiple
capture areas per tissue
Nicholas J Eagles
@Nick-Eagles (GitHub)
Prashanthi Ravichandran
@prashanthi-ravichandran (GH)
Spot
diameter
error:
~1.8 →
~1.1
Another
pair:
~2.8 →
~0.76
Slide 46
Slide 46 text
lcolladotor.github.io/#projects
● Every assay has caveats
● We re-use tricks:
think adding 0, multiplying by 1
● It nearly always takes a team
● Data sharing accelerates science +
democratizes access to it
● Zooming in allows us to reduce the
heterogeneity
● We can learn from each other: from
uniformly processing our data & re-using
it → replicate / validate?
Slide 47
Slide 47 text
@MadhaviTippani
Madhavi Tippani
@HeenaDivecha
Heena R Divecha
@lmwebr
Lukas M Weber
@stephaniehicks
Stephanie C Hicks
@abspangler
Abby Spangler
@martinowk
Keri Martinowich
@CerceoPage
Stephanie C Page
@kr_maynard
Kristen R Maynard
@lcolladotor
Leonardo Collado-Torres
@Nick-Eagles (GH)
Nicholas J Eagles
Kelsey D Montgomery
Sang Ho Kwon
Image Analysis
Expression Analysis
Data Generation
Thomas M Hyde
@lahuuki
Louise A Huuki-Myers
@BoyiGuo
Boyi Guo
@mattntran
Matthew N Tran
@sowmyapartybun
Sowmya Parthiban
Slides available at
speakerdeck.com
/lcolladotor
+ Many more LIBD, JHU, and
external collaborators
@mgrantpeters
Melissa Grant-Peters
@prashanthi-ravichandran (GH)
Prashanthi Ravichandran