Upgrade to Pro — share decks privately, control downloads, hide ads and more …



Leonardo Collado-Torres

October 02, 2023

More Decks by Leonardo Collado-Torres

Other Decks in Science


  1. @lcolladotor lcolladotor.github.io lcolladotor.github.io/bioc_team_ds Lessons Learned from Spatially-Resolved Transcriptomics of Postmortem

    Human Brain Data Projects Leonardo Collado Torres, Investigator Festival of Genomics & Biodata October 3 2023 Slides available at speakerdeck.com/lcolladotor
  2. Zoom in: snRNA-seq → deconvolution of bulk RNA-seq Matthew N

    Tran @mattntran Kristen R Maynard @kr_maynard Louise A Huuki-Myers @lahuuki Keri Martinowich @martinowk Stephanie C Hicks @stephaniehicks
  3. What is Deconvolution? • Inferring the composition of different cell

    types in a bulk RNA-seq data Louise A Huuki-Myers @lahuuki
  4. #deconvochallenge Challenges and opportunities to computationally deconvolve heterogeneous tissue with

    varying cell sizes using single cell RNA-sequencing datasets doi.org/10.48550/arXiv.2305.06501 Sean Maden @MadenSean
  5. Zoom in: spatial omics Kristen R Maynard @kr_maynard Keri Martinowich

    @martinowk Stephanie C Hicks @stephaniehicks Andrew E Jaffe @andrewejaffe Stephanie C Page @CerceoPage
  6. Visium Platform for Spatial Gene Expression Image from 10x Genomics

    - A slide contains 4 capture areas, each full of thousands of 55um-wide “spots” (often containing 1-10 cells) - Unique barcodes in each spot bind to particular genes; after sequencing, gene expression can be tied back to exact spots, forming a spatial map Kristen R. Maynard 9
  7. bioconductor.org/packages/spatialLIBD Pardo et al, 2022 DOI 10.1186/s12864-022-08601-w Maynard, Collado-Torres, 2021

    DOI 10.1038/s41593-020-00787-0 Brenda Pardo Abby Spangler @PardoBree @abspangler Louise A. Huuki-Myers @lahuuki
  8. 2 pairs spatial adjacent replicates x subject = 12 sections

    11 Subject 1 Subject 2 Subject 3 Adjacent spatial replicates (0μm) Adjacent spatial replicates (300μm) PCP4 Maynard, Collado-Torres, et al, Nat Neuro, 2021
  9. DOI: 10.1038/s41593-020-00787-0 twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29 DOI 10.1093/bioinformatics/btac299 Since Feb 2020

    spatialLIBD::fetch_data() provides access to SpatialExperiment R/Bioconductor objects Stephanie C Hicks @stephaniehicks Lukas M Weber @lmweber
  10. BayesSpace clustering with batch correction worked best for multiple samples

    17 doi.org/10.1101/2023.02.15.528722 twitter.com/CrowellHL/status/1597579271945715717
  11. Spatial Registration Adds Anatomical Context • Validate detection of laminar

    structure • Correlate enrichment t-statistics for top marker genes of reference ◦ Cluster vs. manual annotation • Annotate with strongly associated histological layer 18 Sp k D d ~L doi.org/10.1101/2023.02.15.528722
  12. Spatial Registration of Spatial Domains • Map SpDs to Maynard

    et al. manual annotated layers • Highlight most strongly associated histological layer to add biological context 19 doi.org/10.1101/2023.02.15.528722
  13. Identify Layer Associated Neuron Populations 20 • Apply Spatial Registration

    with manual layers • 13 layer-level cell types ◦ Assign Excitatory Neurons histological layers ◦ Pool other cell type groups Kelsey D Montgomery
  14. Spot Deconvolution 21 Cell 1 Cell 2 … Cell N

    Gene 1 0 0 … 0 Gene 2 2 5 … 3 … … … … … Gene i 1 0 … 0 Spot 1 Spot 2 … Spot M Gene 1 1 0 … 3 Gene 2 0 1 … 0 … … … … … Gene j 4 2 … 2 Astro Excit … Inhib Spot 1 1 1 … 1 Spot 2 … … … … … … Spot N 1 0 … 2 Single- Nucleus Spatial Deconvolved Results Spot 1 Nicholas J Eagles @Nick-Eagles (GitHub)
  15. Existing Spot Deconvolution Software - Explored 3 novel software methods

    from the literature Software name Overall approach Input Cell Counts Output Tangram (Biancalani et al.) Mapping individual cells Every spot Integer counts Cell2location (Kleshchevnikov et al.) Matching gene-expression profile Average across spots Decimal counts SPOTlight (Elosua-Bayes et al.) Matching gene-expression profile Not used Proportions 22 Excit L5 Counts
  16. Visium Spatial Proteogenomics (Visium-SPG) Visium-SPG = Visium SRT + immunofluorescence

    (using identical tissue samples) Sang Ho Kwon @sanghokwon17
  17. Visium Spatial Proteogenomics (Visium-SPG) - Gene expression captured like ordinary

    Visium - Multi-channel fluorescent images captured of the same tissue - Channels measure proteins marking for specific cell types Kristen R. Maynard 25 Sang Ho Kwon Visium-SPG = Visium SRT + immunofluorescence (using identical tissue samples) Fluorescent Protein Cell Type TMEM119 Microglia Neun Neurons OLIG2 Oligodendrocytes GFAP Astrocytes
  18. Benchmark Summary 28 Metric Tangram Cell2location SPOTlight Metric Type Avg.

    cor (spot-level) 0.31 0.30 0.21 Orthogonal measurements Avg. RMSE (spot-level) 1.35 1.24 1.3 Orthogonal measurements Overall prop.: (KL Div.) 0.44 0.49 0.41 Orthogonal measurements Overall prop.: (cor.) 0.46 0.37 0.47 Orthogonal measurements Overall prop.: (RMSE) 3020 3890 3040 Orthogonal measurements Histological mapping 0.69 0.77 0.23 Leverage known biology Broad vs. layer (cor.) 1.00 0.77 -0.36 Self-consistency of results Broad vs. layer (RMSE) 102 4200 4220 Self-consistency of results Nicholas J Eagles @Nick-Eagles (GitHub)
  19. How Spot Deconvolution Results Were Used A. Better characterize unsupervised

    spatial domains B. Cell-cell communication; cell-type-informed ligand-receptor interactions in the context of schizophrenia risk A 29 Boyi Guo Melissa Grant-Peters
  20. Visium spatial clustering works for variables with high % variance

    explained. But what about other ones? DOI: 10.1038/s41593-020-00787-0
  21. AD pathology signal is too small to detect by spatially-resolved

    gene expression alone research.libd.org/Visium_SPG_AD/
  22. sc/snRNA-seq QC metrics such as # detected genes, # UMI,

    mitochondria expression % are likely biologically related!
  23. Having more data is useful to provide context! Here 4

    new samples have low sequencing saturation (outliers) but are within range of good samples from other studies
  24. Having more data is useful to provide context! Those 4

    samples have great median UMI counts per spot ^_^
  25. Software keeps evolving and as leaders in the field we

    aim to use the best methods 41 Moses, L., Pachter, L. Museum of spatial transcriptomics. Nat Methods 19, 534–546 (2022). https://doi.org/10.1038/s41592-022-01409-2
  26. The Development Process - Making a module - New, experimental

    software can change dramatically (function and syntax) between versions - Promotes collaboration by allowing two researchers to share exact code and instantly run software without special set-up SpatialExperiment release 3.14 SpatialExperiment devel 3.15 module load tangram/1.0.2 module load cell2location/0.8a0 module load spagcn/1.2.0 https://github.com/LieberInstitute/jhpce_mod_source https://github.com/LieberInstitute/jhpce_module_config Nicholas J Eagles @Nick-Eagles (GitHub)
  27. The Development Process - Regular interaction with software authors to

    clarify functionality and report bugs - Documentation for code and author responsiveness on GitHub can be critical in successfully applying software to our data Nicholas J Eagles @Nick-Eagles (GitHub)
  28. More challenges ahead Working with multiple capture areas per tissue

    Nicholas J Eagles @Nick-Eagles (GitHub) Prashanthi Ravichandran @prashanthi-ravichandran (GH) Spot diameter error: ~1.8 → ~1.1 Another pair: ~2.8 → ~0.76
  29. lcolladotor.github.io/#projects • Every assay has caveats • We re-use tricks:

    think adding 0, multiplying by 1 • It nearly always takes a team • Data sharing accelerates science + democratizes access to it • Zooming in allows us to reduce the heterogeneity • We can learn from each other: from uniformly processing our data & re-using it → replicate / validate?
  30. @MadhaviTippani Madhavi Tippani @HeenaDivecha Heena R Divecha @lmwebr Lukas M

    Weber @stephaniehicks Stephanie C Hicks @abspangler Abby Spangler @martinowk Keri Martinowich @CerceoPage Stephanie C Page @kr_maynard Kristen R Maynard @lcolladotor Leonardo Collado-Torres @Nick-Eagles (GH) Nicholas J Eagles Kelsey D Montgomery Sang Ho Kwon Image Analysis Expression Analysis Data Generation Thomas M Hyde @lahuuki Louise A Huuki-Myers @BoyiGuo Boyi Guo @mattntran Matthew N Tran @sowmyapartybun Sowmya Parthiban Slides available at speakerdeck.com /lcolladotor + Many more LIBD, JHU, and external collaborators @mgrantpeters Melissa Grant-Peters @prashanthi-ravichandran (GH) Prashanthi Ravichandran