Slide 1

Slide 1 text

Charty (RubyGrant 2018) RubyKaigi 2019 Kazuma Furuhashi ඵ଎@284km

Slide 2

Slide 2 text

Ruby Association Grant 2018 • 12/1 => Development • 1/11 => Intermediate Report • 3/11 => Final Report • https://www.ruby.or.jp/en/news/20181106

Slide 3

Slide 3 text

Charty

Slide 4

Slide 4 text

What is Charty • Charty is an open-source Ruby library for visualizing your data in a simple way. • https://github.com/red-data-tools/charty

Slide 5

Slide 5 text

red-data-tools/charty • In Charty, you need to write very few lines of code for representing what you want to do. • It lets you focus on your analysis of data, instead of plotting. • i.e. We aim at convenience.

Slide 6

Slide 6 text

Characteristics of charty • Charty has two abstraction layers • Data Abstraction Layer • Plotting Abstraction Layer

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

Abstraction Layer We can do what you want in a combination of different languages, data structures, and libraries.

Slide 9

Slide 9 text

Data Abstraction Layer • Daru::DataFrame • Numo::NArray • NMatrix • ActiveRecord

Slide 10

Slide 10 text

Plotting Abstraction Layer • Matplotlib • Gruff • rubyplot • chart.js (Experimental implementation) demo later • 284km/benchmark_driver-output-charty

Slide 11

Slide 11 text

284km/benchmark_driver-output-charty $ be benchmark-driver examples/parse.yaml -o charty

Slide 12

Slide 12 text

Demo

Slide 13

Slide 13 text

Activeecord x Chart.js

Slide 14

Slide 14 text

Reference: • holoviews (Python) • Gadfly.jl (Julia) • ggplot2 (R) • Julia Package GR (GR Framework) • Python Package GR (GR Framework) • Codes to use via PyCall Library (matplotlib.rb, matplotlib, pyplot ͱ͔) • and so on ……

Slide 15

Slide 15 text

Future Plans • Data Abstraction Layer • Support Red::Arrow • Improve benchmark_driver-output-charty • Plotting Abstraction Layer • Add type of graph that can be output • Horizontal bar with Gruff • Support bokeh ? maybe. • Use in business

Slide 16

Slide 16 text

Red Data Tools • https://red-data-tools.github.io/ • 5/14 (Ր) 19:00 - 21:30 • Code Party: Today 19:00 - 21:00 • After Hack: Sun. 10:30 - 17:30 • Develop together !!

Slide 17

Slide 17 text

Red Data Tools

Slide 18

Slide 18 text

Enjoy !! :)