Slide 1

Slide 1 text

下世代能源燃料的新寵兒 - 高能 金屬微粒 演講者: 李約亨 副教授 ( Yueh-Heng Li) 副國際長 國際事務處 國立成功大學 航空太空工程學系 國立成功大學 Date: 2020/9/22

Slide 2

Slide 2 text

2 Combustion & Energy Electric Propulsion Gas Turbine Engine Zic and Partners’ Lab

Slide 3

Slide 3 text

3 https://www.tellerreport.com/life/2020-09-10-us-west-coast--three-dead-in-northern-california-forest-fires.rygxcVkQw4v.html

Slide 4

Slide 4 text

4 https://www.fire.ca.gov/incidents/

Slide 5

Slide 5 text

5 https://metro.co.uk/2020/01/05/devastating-extent-australias-bushfires-seen-space-12003553/

Slide 6

Slide 6 text

6 https://www.bbc.com/news/world-51500692 https://www.bbc.co.uk/newsround/52752919

Slide 7

Slide 7 text

7 https://www.tv7israelnews.com/locust-disaster-averted-in-east-africa-says-fao/

Slide 8

Slide 8 text

8 https://www.dw.com/en/china-floods-sichuan-buddha/a-54622058 https://cn.nytimes.com/china/20200703/china-floods- rain/zh-hant/dual/

Slide 9

Slide 9 text

9 https://www.theguardian.com/world/2018/jun/11/giant-african-baobab-trees-die-suddenly-after-thousands-of-years https://www.swahilimodern.com/products/recycled-wire-baobab-tree https://www.atacora.com/baobab-blog/baobab-african-tree-of-life

Slide 10

Slide 10 text

10 https://www.theguardian.com/us-news/2018/feb/01/polar-bears-climate-change

Slide 11

Slide 11 text

11 https://www.theguardian.com/environment/2018/jun/05/coral-decline-in-great-barrier-reef-unprecedented

Slide 12

Slide 12 text

12 https://coralreefwatch.noaa.gov/satellite/bleachingoutlook_cfs/weekly_60.php https://www.theguardian.com/environment/2018/jun/05/coral-decline-in-great-barrier-reef-unprecedented

Slide 13

Slide 13 text

The relationship btw CO2 and global temperature http://www.sciencedaily.com/releases/2012/10/121011151433.htm#. UHjfwLGMBx0.blogger http://www.ablemesh.co.uk/thoughtsinconvenienttruth.html

Slide 14

Slide 14 text

Earth’s energy balance 14 407 ppm 96% 95% http://moodle.monashores.net/mod/page/view.php?id=41596 http://www.atmo.arizona.edu/students/courselinks/fall12/atmo336/lectures/sec5/pleistocene.html https://climate.ncsu.edu/edu/EnergyBalance

Slide 15

Slide 15 text

What is greenhouse gas (GHG)? 15 Triatomic molecule Compound Formula Contribution (%) Water vapor and clouds H2 O 36 – 72% Carbon dioxide CO2 9 – 26% Methane CH4 4–9% Ozone O3 3–7% https://www.icbf.com/wp/wp-content/uploads/2017/07/ISAG_170717.pdf https://www.quora.com/What-is-the-difference-between-carbon-and-carbon-dioxide

Slide 16

Slide 16 text

The relationship btw CO2 and global temperature 16 http://www.sciencedaily.com/releases/2012/10/121011151433.htm# .UHjfwLGMBx0.blogger http://www.ablemesh.co.uk/thoughtsinconvenienttruth.html

Slide 17

Slide 17 text

Nature Carbon Fixation and Carbon Cycle 17 Uptake by ocean Photosynthesis https://aka.weightwatchers.ca/templates/print.aspx?PageId=1388041&PrintFlag=yes&previewDate=1/5/2017 (Right) https://kknews.cc/zh-tw/travel/ymx2njb.html (Left) https://www.tiempo.com/ram/mejor-comprension-del-ciclo-global-del-carbono.html https://www.dreamstime.com/stock-photo-forest-image8437160

Slide 18

Slide 18 text

Carbon footprint 18 A single tree can absorb CO2 at a rate of 22 kg per year. https://heiko-gaertner.com/baum_hintergrund-vollhd-3/

Slide 19

Slide 19 text

Carbon footprint 19 Carbon footprint refers to the Greenhouse gas emissions that are released into the environment by using Energy https://publiciota.com/category/informations

Slide 20

Slide 20 text

20 Invisible CO2 emission in your life Carbon footprint https://www.youtube.com/watch?v=-3Gt- m9a3vU&feature=emb_title

Slide 21

Slide 21 text

21 Humans exhale 1 kg of CO2 per day. Each person generates approximately 2.3 tons of CO2 per year. Carbon footprint People vector created by freepik - www.freepik.com

Slide 22

Slide 22 text

22 Humans exhale 1 kg of CO2 per day. Each person generates approximately 2.3 tons of CO2 per year. Carbon footprint ~105 trees People vector created by freepik - www.freepik.com http://images.clipartpanda.com/tree-clipart-tree_tiny_green_shaded.png

Slide 23

Slide 23 text

23 Airplanes release 1 ton of CO2 per 3318 km (Taipei to Singapore) Carbon footprint https://www.uokpl.rs/rsvi/ibxmhhm_small-plane-cliparts/ https://pnghut.com/png/GVMu1Ss6mw/airplane-cessna-citation-x-clip-art-air-travel-transparent-png

Slide 24

Slide 24 text

24 Airplanes release 1 ton of CO2 per 3318 km (Taipei to Singapore) Carbon footprint ~45 trees https://www.uokpl.rs/rsvi/ibxmhhm_small-plane-cliparts/ https://pnghut.com/png/GVMu1Ss6mw/airplane-cessna-citation-x-clip-art-air-travel-transparent-png http://images.clipartpanda.com/tree-clipart-tree_tiny_green_shaded.png

Slide 25

Slide 25 text

25 Cars release 3.66 kg of CO2 per 10 km. Bus or Train traveling for 10 to 20 km releases 1 kg of CO2 . Carbon footprint https://www.pinterest.com/pin/333055334926407996/

Slide 26

Slide 26 text

26 Cars release 3.66 kg of CO2 per 10 km. Bus or Train traveling for 10 to 20 km releases 1 kg of CO2 . Carbon footprint Tainan to Taipei (316 km) 5 0.7-1.4 https://www.pinterest.com/pin/333055334926407996/ http://images.clipartpanda.com/tree-clipart-tree_tiny_green_shaded.png

Slide 27

Slide 27 text

27 Using Computers for 32 hours releases 1 kg of CO2 . Carbon footprint http://clipart-library.com/clipart/pc7rxAy9i.htm

Slide 28

Slide 28 text

28 5 plastic bags or 2 plastic bottles release 1 kg of CO2 . Carbon footprint

Slide 29

Slide 29 text

29 American cheeseburger releases 2.85 to 3.1 kg of CO2 . Carbon footprint

Slide 30

Slide 30 text

30 American cheeseburger releases 2.85 to 3.1 kg of CO2 . Carbon footprint This includes a myriad of factors, from growing the feed for the cattle for the beef and cheese, growing the produce, storing and transporting the components, as well as cooking them all. https://twitter.com/missearth_sa

Slide 31

Slide 31 text

31 https://www.nature.com/articles/s41558-020-0797-x

Slide 32

Slide 32 text

32 Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement https://www.icos-cp.eu/gcp-covid19

Slide 33

Slide 33 text

Fossil fuel demand 33  Fossil fuels, such as coal, natural gas, and oil, still dominate as primary energy sources to produce electricity. [1] International Energy Agency (IEA), 2019 https://www.iamrenew.com/green-energy/abandoning-coal-japan-scraps-another- thermal-power-plant-lessons-for-india/attachment/world-map-for-coal-plants/ Source : IEA Electricity Information 2017

Slide 34

Slide 34 text

Energy carrier 34 Storage type Specific energy (MJ/kg) Wood 16.2 Natural gas 46.4 Petroleum ~46.0 Coal 24.0 Battery, Li-ion rechargeable 0.36 – 0.875

Slide 35

Slide 35 text

Energy conversion 35 reactant Formation enthalpy Formation enthalpy product Energy level Enthalpy difference Enthalpy difference Chemical reaction Energy release System boundary Heat Work Energy conversion Heat release by chemical reaction Water steam absorbing heat from flame Steam pressure makes a lid moving

Slide 36

Slide 36 text

Renewable energy 36 Advantages:  No harmful emission  Free sources energy Challenges for Clean Energy  Territory area and site selection  Expensive storage material (e.g. Lithium)  Environmental condition [2] The hydrogen energy company (THEC) , 2020 https://expatguideturkey.com/turkish-citizenship-by-investment/turkey-became- popular-for-clean-energy-investment/

Slide 37

Slide 37 text

Introduction − Metal fuels 37 Advantages  High energy carrier that it is safe to be transported  Easy and Safe enough to be stored for long term  Relatively cheap and has the similar or higher energy density compared with hydrocarbon [2] Bergthorson et al., 2015

Slide 38

Slide 38 text

Introduction − Metal flames 38 Stabilized flames of different metal powders burning with air, compared to a methane-air flame https://www.mcgill.ca/newsroom/channels/news/could-metal-particles-be-clean-fuel-future-257172

Slide 39

Slide 39 text

Introduction − Metal Fuels 39 [2] Bergthorson et al., 2015 Schematic of a generic electro fuel cycle • Produced using clean renewable energy/nuclear energy, they can have low net carbon-dioxide emissions. • The product of fuel combustion, or oxidation, must be recycled back into the fuel with minimal loss to the environment https://pubs.rsc.org/en/content/articlelanding/2017/se/c7se00004a#!divAbstract

Slide 40

Slide 40 text

Introduction − Recycle process 40 [2] Bergthorson et al., 2015 Hematite Fe2 O3 →Fe3 O4 → Fe (below 570oC) Magnetite Fe3 O4 → Fe (below 570oC) Wustite FeO→ Fe3 O4 → Fe (below 570oC) Redox reaction for Fe • 3α-Fe2 O3 + H2 = 2Fe3 O4 + H2 O • 2(Fe3 O4 + 4H2 = 3Fe + 4 H2 O) • 2(Fe3 O4 + H2 = 3FeO + H2 O) • 6(FeO + H2 = Fe+H2 O)

Slide 41

Slide 41 text

Metal combustion application 41  Metal powders are often used as additives in propellants because of their high enthalpy of combustion[3,4]  Solid propellant for rocket enhances combustion stability[4,5]  Different metal powders have different energy densities compare to hydrocarbon fuels [3] Divekar et al., 2003 [4] Kuo et al., 1984 [5] Summerfield et al., 1969 NASA, Penn State, Purdue Join research rocket with ALICE (Aluminum-Ice)

Slide 42

Slide 42 text

Metal combustion application 42 https://star-ale.com/

Slide 43

Slide 43 text

Metal combustion application 43 [6] Bergthorson et al, 2018  Wet Cycle, the high-temperature metal might react with water, leading to exothermicity and hydrogen production.  Aluminum mixed with water as an oxidizer has 4,212 Whkg-1 of the specific energy and 11,374 WhL-1  Dry Cycle, direct combustion with air and hydrocarbon fuel for an external combustion heat engine. https://www.researchgate.net/figure/Schematic-diagram-of-the-metal-fuel-concept- showing-the-different-routes-for-power_fig5_327372687

Slide 44

Slide 44 text

Metal-driven recyclable fuel 44  External heating engine  Rankine Cycle, Boiler and Steam turbine  Residential, commercial heating [6] Bergthorson et al., 2018 https://afl.mcgill.ca/AFL-Research.html Credit: J. Palecka

Slide 45

Slide 45 text

Metal-driven power generator 45 [6] Bergthorson et al., 2018 Credit: J. Palecka

Slide 46

Slide 46 text

Metal combustion 46 [6] Bergthorson et al., 2015 Type A: Vapor Phase Droplet Combustion, e.g., Al, Mg. Micro flame Nano-oxide • Vapor phase droplet combustion • Micro flame will appeared in the metal vapor region • Homogeneous combustion reaction

Slide 47

Slide 47 text

Metal combustion 47 [6] Bergthorson et al., 2015 Type A: Vapor Phase Droplet Combustion, e.g., Al, Mg.

Slide 48

Slide 48 text

Metal combustion 48 [6] Bergthorson et al., 2015 Type B: Heterogeneous combustion with gaseous and sub oxides, e.g., B and Si. Sub-oxide reaction /condensation zone Micro flame Nano-oxide • Forming a gaseous oxide and sub-oxide • Micro flame will occurred in the metal droplet surface • Homogeneous reaction appear in mode a and mode b, the metal oxide will become smaller than its initial condition https://www.sciencedirect.com/science/article/pii/S0306261915011071

Slide 49

Slide 49 text

Metal combustion 49 [6] Bergthorson et al., 2015 Type B: Heterogeneous combustion with gaseous and sub oxides, e.g., B and Si. https://www.sciencedirect.com/science/article/pii/S0306261915011071

Slide 50

Slide 50 text

Introduction − Combustion 50 [6] Bergthorson et al., 2015 Type C: Heterogeneous combustion with porous oxide shell, e.g., Fe. • Completely react in heterogeneous combustion • Produce larger metal oxide • Easier to capture for recyclability purpose https://www.sciencedirect.com/science/article/pii/S0306261915011071

Slide 51

Slide 51 text

Metal Oxide 51 [6] Bergthorson et al., 2015 https://www.sciencedirect.com/science/article/pii/S0306261915011071

Slide 52

Slide 52 text

Experimental apparatus 52

Slide 53

Slide 53 text

Solid fuels 53 Material D10 D50 D90 Mean size [μm] Intensity Volume Number Fe 1.183 2.712 6.216 2.245 2.548 2.192 Fe−Coal 1.262 1.755 2.440 1.836 1.876 1.826 Fe−Al 1.082 1.176 2.319 1.270 1.393 1.352 (a) (b) (c) Fe Fe Al Coal Fe Fe Fe-Al Fe-Coal

Slide 54

Slide 54 text

Results and Discussion − Flame 54  Single Fuel Hybrid Combustion  Coupled flame for Fe and Al at 250 mm/hr 27.69 g/h  No Al particles after passed the flame cone  Blue methane flame still appeared for coal combustion Fe Al Coal

Slide 55

Slide 55 text

Results and Discussion − Flame 55  Flame behavior Fe hybrid combustion  (a) 5.53 g/h (b)27.69 g/h (a) Low feeding rate (b) High feeding rate Coupled flame front

Slide 56

Slide 56 text

Results and Discussion − Flame 56  Flame behavior Fe-Al hybrid combustion  (a) 5.53 g/h (b)27.69 g/h (a) Low feeding rate (b) High feeding rate Coupled flame front

Slide 57

Slide 57 text

Results and Discussion − Flame 57  Flame behavior Fe-Coal hybrid combustion  (a) 5.53 g/h (b)27.69 g/h (a) Low feeding rate (b) High feeding rate Coupled flame front

Slide 58

Slide 58 text

Results and Discussion 58  Solid particle shape evolution Fe Fe-Al Fe-Coal

Slide 59

Slide 59 text

Results and Discussion 59  Single fuel combustion characteristic

Slide 60

Slide 60 text

Results and Discussion 60  Micro explosion phenomena in Fe-Coal  The exploded particle may trigger other particles near the first explosion to be explode

Slide 61

Slide 61 text

Results and Discussion 61  Proposed micro explosion mechanism

Slide 62

Slide 62 text

Results and Discussion 62  FeO-MOF Hybrid Combustion (a) 90%:10% (b) 80%:20% (c) 70%:30% Fe ion (Fe3+) with Benzene- 1,3,5- tricarboxylic acid (H3 BTC)

Slide 63

Slide 63 text

Thank you for attention Yueh-Heng Li (Zic) 李約亨 ZAP Lab: http://zap-lab.tw