DPを使ったナップザック問題の解き方/Solve knapsack problem with DP
by
d kura
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
DP(動的計画法)を使った ナップザック問題の解き方 情報科学科 1年 倉持大樹 1
Slide 2
Slide 2 text
DP(動的計画法)とは? • 数学の漸化式のように解くアルゴリズム • 全探索で行うと時間がかかりすぎる問題に使う 2
Slide 3
Slide 3 text
DPの実践(ナップザック問題) 問題 N個の品物があり、各品物に重さと価値が決まっている。 これらの品物からいくつかを重さの総和がWを超えない ように選んだときの、価値の総和の最大値を求めよ。 例 N=3 (重さ,価値)=(2,3),(1,4),(3,6) W=3 ⇒7 ( (2,3),(1,4)を選んだとき ) 3
Slide 4
Slide 4 text
他の解法(ナップザック問題) 各品物について選ぶ、選ばないを決める →全パターンの重さ、価値の合計を出す →重さがW以下の中での価値の最大値を見つける 品物 (2,3) (1,4) (3,6) 重さ 価値 〇 〇 〇 6 13 〇 〇 × 3 7 〇 × 〇 5 9 〇 × × 2 3 × 〇 〇 4 10 × 〇 × 1 4 × × 〇 3 6 × × × 0 0 4
Slide 5
Slide 5 text
DPの考え方(ナップザック問題) 考える範囲 ⇒一度に全体を考えるとわかりずらい 5
Slide 6
Slide 6 text
DPの考え方(ナップザック問題) 𝑥𝑖 =i番目まででの価値の最大値 考える範囲 ⇒考える範囲を増やしていく 6
Slide 7
Slide 7 text
DPの考え方(ナップザック問題) →重さの情報がないため 𝑥𝑖 を 𝑥𝑖−1 から 求められない ⇒・添え字の数を2つに増やす ・増やした添え字に重さの情報を入れる 𝑥𝑖 =i番目まででの価値の最大値 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 7
Slide 8
Slide 8 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 1 2 3 表の右下の数字は 3番目までで重さが3以下の価値の最大値 8
Slide 9
Slide 9 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 1 2 3 1. i=0の行を埋める⇒一つも候補がない 9
Slide 10
Slide 10 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 2 3 1. i=0の行を埋める⇒一つも候補がない 10
Slide 11
Slide 11 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める マスに入る数の候補は (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) ※w-2列が存在しないときは(ⅰ)のみ 11
Slide 12
Slide 12 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 12
Slide 13
Slide 13 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 13
Slide 14
Slide 14 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 14
Slide 15
Slide 15 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 3 3 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 15
Slide 16
Slide 16 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 3 3 2 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 16
Slide 17
Slide 17 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 17
Slide 18
Slide 18 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 18
Slide 19
Slide 19 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 19
Slide 20
Slide 20 text
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 5. 表の1番右下のマスの値が答え 20
Slide 21
Slide 21 text
DPの実践(ナップザック問題) 1. 漸化式の添え字の数を決める 2. 漸化式を決定する 3. 初期値を決定する 解法の手順 21
Slide 22
Slide 22 text
DPの実践(ナップザック問題) ⇒添え字は i と w の2つ i…何番目の品物まで考えるか w…重さはいくつ以下とするか 1. 漸化式の添え字の数を決める 22
Slide 23
Slide 23 text
DPの実践(ナップザック問題) i番目の品物の重さ・価値 ⇒ 𝑤𝑖 ・𝑣𝑖 とすると 𝑥𝑖,𝑤 = ൝ max(𝑥𝑖−1,𝑤−𝑤𝑖 +𝑣𝑖 , 𝑥𝑖−1,𝑤 ) 𝑥𝑖−1,𝑤 𝑤 ≥ 𝑤𝑖 𝑤 < 𝑤𝑖 (ⅰ) 一つ上の行にある数 (i番目を選ばない) (ⅱ) 一つ上の行のw-𝑤𝑖 列にある数+𝑣𝑖 (i番目を選ぶ) 2. 漸化式の決定 漸化式 23
Slide 24
Slide 24 text
DPの実践(ナップザック問題) 3. 初期値の決定 𝑥𝑖,𝑤 = 0 0 ≤ 𝑤 ≤ 𝑊 ⇒表のi=0の行をすべて0で埋めた i\w 0 1 2 3 0 0 0 0 0 1 24
Slide 25
Slide 25 text
最後に • 𝑂(2𝑁) → 𝑂(𝑁𝑊)まで短縮できた • このほかの2つDPを使う問題のパターンに 取り組みたい • ナップザック問題をより発展させた問題に 取り組みたい 25