$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DPを使ったナップザック問題の解き方/Solve knapsack problem with DP
Search
d kura
November 29, 2022
Programming
0
510
DPを使ったナップザック問題の解き方/Solve knapsack problem with DP
d kura
November 29, 2022
Tweet
Share
Other Decks in Programming
See All in Programming
TUIライブラリつくってみた / i-just-make-TUI-library
kazto
1
390
AIコーディングエージェント(Manus)
kondai24
0
190
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
160
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
430
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
38
26k
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
200
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
180
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
120
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
270
dotfiles 式年遷宮 令和最新版
masawada
1
780
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
110
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
510
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Agile that works and the tools we love
rasmusluckow
331
21k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Music & Morning Musume
bryan
46
7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
The Cult of Friendly URLs
andyhume
79
6.7k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Transcript
DP(動的計画法)を使った ナップザック問題の解き方 情報科学科 1年 倉持大樹 1
DP(動的計画法)とは? • 数学の漸化式のように解くアルゴリズム • 全探索で行うと時間がかかりすぎる問題に使う 2
DPの実践(ナップザック問題) 問題 N個の品物があり、各品物に重さと価値が決まっている。 これらの品物からいくつかを重さの総和がWを超えない ように選んだときの、価値の総和の最大値を求めよ。 例 N=3 (重さ,価値)=(2,3),(1,4),(3,6) W=3 ⇒7
( (2,3),(1,4)を選んだとき ) 3
他の解法(ナップザック問題) 各品物について選ぶ、選ばないを決める →全パターンの重さ、価値の合計を出す →重さがW以下の中での価値の最大値を見つける 品物 (2,3) (1,4) (3,6) 重さ 価値
〇 〇 〇 6 13 〇 〇 × 3 7 〇 × 〇 5 9 〇 × × 2 3 × 〇 〇 4 10 × 〇 × 1 4 × × 〇 3 6 × × × 0 0 4
DPの考え方(ナップザック問題) 考える範囲 ⇒一度に全体を考えるとわかりずらい 5
DPの考え方(ナップザック問題) 𝑥𝑖 =i番目まででの価値の最大値 考える範囲 ⇒考える範囲を増やしていく 6
DPの考え方(ナップザック問題) →重さの情報がないため 𝑥𝑖 を 𝑥𝑖−1 から 求められない ⇒・添え字の数を2つに増やす ・増やした添え字に重さの情報を入れる 𝑥𝑖
=i番目まででの価値の最大値 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 7
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 1
2 3 表の右下の数字は 3番目までで重さが3以下の価値の最大値 8
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
1 2 3 1. i=0の行を埋める⇒一つも候補がない 9
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 1. i=0の行を埋める⇒一つも候補がない 10
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める マスに入る数の候補は (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) ※w-2列が存在しないときは(ⅰ)のみ 11
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 12
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 13
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 14
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 15
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 16
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 17
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 18
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 19
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 5. 表の1番右下のマスの値が答え 20
DPの実践(ナップザック問題) 1. 漸化式の添え字の数を決める 2. 漸化式を決定する 3. 初期値を決定する 解法の手順 21
DPの実践(ナップザック問題) ⇒添え字は i と w の2つ i…何番目の品物まで考えるか w…重さはいくつ以下とするか 1. 漸化式の添え字の数を決める
22
DPの実践(ナップザック問題) i番目の品物の重さ・価値 ⇒ 𝑤𝑖 ・𝑣𝑖 とすると 𝑥𝑖,𝑤 = ൝ max(𝑥𝑖−1,𝑤−𝑤𝑖
+𝑣𝑖 , 𝑥𝑖−1,𝑤 ) 𝑥𝑖−1,𝑤 𝑤 ≥ 𝑤𝑖 𝑤 < 𝑤𝑖 (ⅰ) 一つ上の行にある数 (i番目を選ばない) (ⅱ) 一つ上の行のw-𝑤𝑖 列にある数+𝑣𝑖 (i番目を選ぶ) 2. 漸化式の決定 漸化式 23
DPの実践(ナップザック問題) 3. 初期値の決定 𝑥𝑖,𝑤 = 0 0 ≤ 𝑤 ≤
𝑊 ⇒表のi=0の行をすべて0で埋めた i\w 0 1 2 3 0 0 0 0 0 1 24
最後に • 𝑂(2𝑁) → 𝑂(𝑁𝑊)まで短縮できた • このほかの2つDPを使う問題のパターンに 取り組みたい • ナップザック問題をより発展させた問題に
取り組みたい 25