Upgrade to Pro — share decks privately, control downloads, hide ads and more …

DPを使ったナップザック問題の解き方/Solve knapsack problem with DP

d kura
November 29, 2022

DPを使ったナップザック問題の解き方/Solve knapsack problem with DP

d kura

November 29, 2022
Tweet

Other Decks in Programming

Transcript

  1. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 1

    2 3 表の右下の数字は 3番目までで重さが3以下の価値の最大値 8
  2. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める マスに入る数の候補は (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) ※w-2列が存在しないときは(ⅰ)のみ 11
  3. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 12
  4. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 13
  5. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 14
  6. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 3 3 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 15
  7. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 3 3 2 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 16
  8. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 17
  9. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 18
  10. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 19
  11. DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0

    0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 5. 表の1番右下のマスの値が答え 20
  12. DPの実践(ナップザック問題) i番目の品物の重さ・価値 ⇒ 𝑤𝑖 ・𝑣𝑖 とすると 𝑥𝑖,𝑤 = ൝ max(𝑥𝑖−1,𝑤−𝑤𝑖

    +𝑣𝑖 , 𝑥𝑖−1,𝑤 ) 𝑥𝑖−1,𝑤 𝑤 ≥ 𝑤𝑖 𝑤 < 𝑤𝑖 (ⅰ) 一つ上の行にある数 (i番目を選ばない) (ⅱ) 一つ上の行のw-𝑤𝑖 列にある数+𝑣𝑖 (i番目を選ぶ) 2. 漸化式の決定 漸化式 23
  13. DPの実践(ナップザック問題) 3. 初期値の決定 𝑥𝑖,𝑤 = 0 0 ≤ 𝑤 ≤

    𝑊 ⇒表のi=0の行をすべて0で埋めた i\w 0 1 2 3 0 0 0 0 0 1 24