$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DPを使ったナップザック問題の解き方/Solve knapsack problem with DP
Search
d kura
November 29, 2022
Programming
0
510
DPを使ったナップザック問題の解き方/Solve knapsack problem with DP
d kura
November 29, 2022
Tweet
Share
Other Decks in Programming
See All in Programming
関数の挙動書き換える
takatofukui
4
770
How Software Deployment tools have changed in the past 20 years
geshan
0
28k
All(?) About Point Sets
hole
0
270
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
600
AIコードレビューがチームの"文脈"を 読めるようになるまで
marutaku
0
310
俺流レスポンシブコーディング 2025
tak_dcxi
13
7.9k
CSC305 Lecture 15
javiergs
PRO
0
250
WebRTC と Rust と8K 60fps
tnoho
2
1.9k
30分でDoctrineの仕組みと使い方を完全にマスターする / phpconkagawa 2025 Doctrine
ttskch
3
730
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
400
AIコーディングエージェント(Manus)
kondai24
0
130
認証・認可の基本を学ぼう前編
kouyuume
0
160
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Building Adaptive Systems
keathley
44
2.9k
Typedesign – Prime Four
hannesfritz
42
2.9k
Context Engineering - Making Every Token Count
addyosmani
9
470
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Making Projects Easy
brettharned
120
6.5k
Being A Developer After 40
akosma
91
590k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
700
How to Ace a Technical Interview
jacobian
280
24k
Transcript
DP(動的計画法)を使った ナップザック問題の解き方 情報科学科 1年 倉持大樹 1
DP(動的計画法)とは? • 数学の漸化式のように解くアルゴリズム • 全探索で行うと時間がかかりすぎる問題に使う 2
DPの実践(ナップザック問題) 問題 N個の品物があり、各品物に重さと価値が決まっている。 これらの品物からいくつかを重さの総和がWを超えない ように選んだときの、価値の総和の最大値を求めよ。 例 N=3 (重さ,価値)=(2,3),(1,4),(3,6) W=3 ⇒7
( (2,3),(1,4)を選んだとき ) 3
他の解法(ナップザック問題) 各品物について選ぶ、選ばないを決める →全パターンの重さ、価値の合計を出す →重さがW以下の中での価値の最大値を見つける 品物 (2,3) (1,4) (3,6) 重さ 価値
〇 〇 〇 6 13 〇 〇 × 3 7 〇 × 〇 5 9 〇 × × 2 3 × 〇 〇 4 10 × 〇 × 1 4 × × 〇 3 6 × × × 0 0 4
DPの考え方(ナップザック問題) 考える範囲 ⇒一度に全体を考えるとわかりずらい 5
DPの考え方(ナップザック問題) 𝑥𝑖 =i番目まででの価値の最大値 考える範囲 ⇒考える範囲を増やしていく 6
DPの考え方(ナップザック問題) →重さの情報がないため 𝑥𝑖 を 𝑥𝑖−1 から 求められない ⇒・添え字の数を2つに増やす ・増やした添え字に重さの情報を入れる 𝑥𝑖
=i番目まででの価値の最大値 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 7
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 1
2 3 表の右下の数字は 3番目までで重さが3以下の価値の最大値 8
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
1 2 3 1. i=0の行を埋める⇒一つも候補がない 9
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 1. i=0の行を埋める⇒一つも候補がない 10
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める マスに入る数の候補は (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) ※w-2列が存在しないときは(ⅰ)のみ 11
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 12
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 13
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 14
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 15
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 16
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 17
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 18
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 19
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 5. 表の1番右下のマスの値が答え 20
DPの実践(ナップザック問題) 1. 漸化式の添え字の数を決める 2. 漸化式を決定する 3. 初期値を決定する 解法の手順 21
DPの実践(ナップザック問題) ⇒添え字は i と w の2つ i…何番目の品物まで考えるか w…重さはいくつ以下とするか 1. 漸化式の添え字の数を決める
22
DPの実践(ナップザック問題) i番目の品物の重さ・価値 ⇒ 𝑤𝑖 ・𝑣𝑖 とすると 𝑥𝑖,𝑤 = ൝ max(𝑥𝑖−1,𝑤−𝑤𝑖
+𝑣𝑖 , 𝑥𝑖−1,𝑤 ) 𝑥𝑖−1,𝑤 𝑤 ≥ 𝑤𝑖 𝑤 < 𝑤𝑖 (ⅰ) 一つ上の行にある数 (i番目を選ばない) (ⅱ) 一つ上の行のw-𝑤𝑖 列にある数+𝑣𝑖 (i番目を選ぶ) 2. 漸化式の決定 漸化式 23
DPの実践(ナップザック問題) 3. 初期値の決定 𝑥𝑖,𝑤 = 0 0 ≤ 𝑤 ≤
𝑊 ⇒表のi=0の行をすべて0で埋めた i\w 0 1 2 3 0 0 0 0 0 1 24
最後に • 𝑂(2𝑁) → 𝑂(𝑁𝑊)まで短縮できた • このほかの2つDPを使う問題のパターンに 取り組みたい • ナップザック問題をより発展させた問題に
取り組みたい 25