Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DPを使ったナップザック問題の解き方/Solve knapsack problem with DP
Search
d kura
November 29, 2022
Programming
0
440
DPを使ったナップザック問題の解き方/Solve knapsack problem with DP
d kura
November 29, 2022
Tweet
Share
Other Decks in Programming
See All in Programming
cmp.Or に感動した
otakakot
2
140
Laravel や Symfony で手っ取り早く OpenAPI のドキュメントを作成する
azuki
2
120
どうして僕の作ったクラスが手続き型と言われなきゃいけないんですか
akikogoto
1
120
NSOutlineView何もわからん:( 前編 / I Don't Understand About NSOutlineView :( Pt. 1
usagimaru
0
330
みんなでプロポーザルを書いてみた
yuriko1211
0
260
subpath importsで始めるモック生活
10tera
0
300
Realtime API 入門
riofujimon
0
150
Less waste, more joy, and a lot more green: How Quarkus makes Java better
hollycummins
0
100
Enabling DevOps and Team Topologies Through Architecture: Architecting for Fast Flow
cer
PRO
0
320
Macとオーディオ再生 2024/11/02
yusukeito
0
370
エンジニアとして関わる要件と仕様(公開用)
murabayashi
0
280
Generative AI Use Cases JP (略称:GenU)奮闘記
hideg
1
290
Featured
See All Featured
Scaling GitHub
holman
458
140k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
89
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Ruby is Unlike a Banana
tanoku
97
11k
The Invisible Side of Design
smashingmag
298
50k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
Into the Great Unknown - MozCon
thekraken
32
1.5k
Transcript
DP(動的計画法)を使った ナップザック問題の解き方 情報科学科 1年 倉持大樹 1
DP(動的計画法)とは? • 数学の漸化式のように解くアルゴリズム • 全探索で行うと時間がかかりすぎる問題に使う 2
DPの実践(ナップザック問題) 問題 N個の品物があり、各品物に重さと価値が決まっている。 これらの品物からいくつかを重さの総和がWを超えない ように選んだときの、価値の総和の最大値を求めよ。 例 N=3 (重さ,価値)=(2,3),(1,4),(3,6) W=3 ⇒7
( (2,3),(1,4)を選んだとき ) 3
他の解法(ナップザック問題) 各品物について選ぶ、選ばないを決める →全パターンの重さ、価値の合計を出す →重さがW以下の中での価値の最大値を見つける 品物 (2,3) (1,4) (3,6) 重さ 価値
〇 〇 〇 6 13 〇 〇 × 3 7 〇 × 〇 5 9 〇 × × 2 3 × 〇 〇 4 10 × 〇 × 1 4 × × 〇 3 6 × × × 0 0 4
DPの考え方(ナップザック問題) 考える範囲 ⇒一度に全体を考えるとわかりずらい 5
DPの考え方(ナップザック問題) 𝑥𝑖 =i番目まででの価値の最大値 考える範囲 ⇒考える範囲を増やしていく 6
DPの考え方(ナップザック問題) →重さの情報がないため 𝑥𝑖 を 𝑥𝑖−1 から 求められない ⇒・添え字の数を2つに増やす ・増やした添え字に重さの情報を入れる 𝑥𝑖
=i番目まででの価値の最大値 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 7
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 =i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0 1
2 3 表の右下の数字は 3番目までで重さが3以下の価値の最大値 8
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
1 2 3 1. i=0の行を埋める⇒一つも候補がない 9
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 1. i=0の行を埋める⇒一つも候補がない 10
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める マスに入る数の候補は (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) ※w-2列が存在しないときは(ⅰ)のみ 11
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 12
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 13
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 14
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 3 2. 1番目の品物(2,3)を選ぶが決め、i=1の行を埋める (ⅰ) 一つ上の行にある数 (1番目を選ばない) (ⅱ) 一つ上の行のw-2列にある数+3 (1番目を選ぶ) 15
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 16
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 3. 2番目の品物(1,4)を選ぶが決め、i=2の行を埋める 17
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 18
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 4. 3番目の品物(3,6)を選ぶが決め、i=3の行を埋める 19
DPの考え方(ナップザック問題) 𝑥𝑖,𝑤 = i番目までで重さがw以下の価値の最大値 i\w 0 1 2 3 0
0 0 0 0 1 0 0 3 3 2 0 4 4 7 3 0 4 4 7 5. 表の1番右下のマスの値が答え 20
DPの実践(ナップザック問題) 1. 漸化式の添え字の数を決める 2. 漸化式を決定する 3. 初期値を決定する 解法の手順 21
DPの実践(ナップザック問題) ⇒添え字は i と w の2つ i…何番目の品物まで考えるか w…重さはいくつ以下とするか 1. 漸化式の添え字の数を決める
22
DPの実践(ナップザック問題) i番目の品物の重さ・価値 ⇒ 𝑤𝑖 ・𝑣𝑖 とすると 𝑥𝑖,𝑤 = ൝ max(𝑥𝑖−1,𝑤−𝑤𝑖
+𝑣𝑖 , 𝑥𝑖−1,𝑤 ) 𝑥𝑖−1,𝑤 𝑤 ≥ 𝑤𝑖 𝑤 < 𝑤𝑖 (ⅰ) 一つ上の行にある数 (i番目を選ばない) (ⅱ) 一つ上の行のw-𝑤𝑖 列にある数+𝑣𝑖 (i番目を選ぶ) 2. 漸化式の決定 漸化式 23
DPの実践(ナップザック問題) 3. 初期値の決定 𝑥𝑖,𝑤 = 0 0 ≤ 𝑤 ≤
𝑊 ⇒表のi=0の行をすべて0で埋めた i\w 0 1 2 3 0 0 0 0 0 1 24
最後に • 𝑂(2𝑁) → 𝑂(𝑁𝑊)まで短縮できた • このほかの2つDPを使う問題のパターンに 取り組みたい • ナップザック問題をより発展させた問題に
取り組みたい 25