Slide 30
Slide 30 text
参考文献
[1] Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022.
[2] Gal, Rinon, et al. "An image is worth one word: Personalizing text-to-image generation using textual inversion." arXiv
preprint arXiv:2208.01618 (2022).
[3] Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." arXiv
preprint arXiv:2208.12242 (2022).
[4] Kawar, Bahjat, et al. "Imagic: Text-Based Real Image Editing with Diffusion Models." arXiv preprint arXiv:2210.09276
(2022).
[5] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information
Processing Systems 33 (2020): 6840-6851.
[6] Quasi-Taylor Samplers for Diffusion Generative Models based on Ideal Derivatives
[7] CLIP: Connecting Text and Images https://openai.com/blog/clip/