時間の矢について / Time's arrow
by
kaityo256
Link
Embed
Share
Beginning
This slide
Copy link URL
Copy link URL
Copy iframe embed code
Copy iframe embed code
Copy javascript embed code
Copy javascript embed code
Share
Tweet
Share
Tweet
Slide 1
Slide 1 text
1 28 慶應義塾大学理工学部物理情報工学科 渡辺宙志 2024年1月12日 研究室ミーティング 時間の矢について
Slide 2
Slide 2 text
2 28 時間の矢とは? 我々の感じる「時間」は一方向に流れている 過去の記憶はあるが、未来の記憶はない これはなぜだろう?
Slide 3
Slide 3 text
3 28 時間反転対称性 ミクロな支配方程式は時間反転対称性を持つ 𝑚 𝑑2𝑥 𝑑𝑡2 = 𝐹(𝑥) 例:ニュートンの運動方程式 運動を録画したビデオを逆再生してもどちらが 正方向か区別がつかない 時間に関して二階微分 →もし𝑥(𝑡)が解なら、𝑥(−𝑡)も解
Slide 4
Slide 4 text
4 28 時間反転対称性 マクロな支配方程式は時間反転非対称性 𝜕𝜌 𝜕𝑡 = 𝐷 𝜕2𝜌 𝜕𝑥2 例:拡散方程式 時間に関して一階微分 →もし𝜌(𝑥, 𝑡)が解でも、𝜌(𝑥, −𝑡)は解にならない 拡散現象を録画したビデオを逆再生したら逆再 生とわかる
Slide 5
Slide 5 text
5 28 ミクロからマクロへ 水にインクを垂らすと拡散していく 水原子の動き 𝑚 𝑑2𝑥 𝑑𝑡2 = 𝐹(𝑥) 𝜕𝜌 𝜕𝑡 = 𝐷 𝜕2𝜌 𝜕𝑥2 マクロには時間反転非対称 ミクロには時間反転対称
Slide 6
Slide 6 text
6 28 エーレンフェストの壺 1 2 3 4 5 6 • 2つ壺を用意する • 数字が書かれた玉をN個用意する • 一つの玉をランダムに選んで、その玉をもう一方に移す • 最初は片方にすべての玉を入れておく • 片方の壺の玉の数の時間発展を追う
Slide 7
Slide 7 text
7 28 エーレンフェストの壺 N=10の場合 ステップ 壺 の 中 の 玉 の 数
Slide 8
Slide 8 text
8 28 エーレンフェストの壺 N=100の場合 ステップ 壺 の 中 の 玉 の 数
Slide 9
Slide 9 text
9 28 エーレンフェストの壺 N=1000の場合 ステップ 壺 の 中 の 玉 の 数 どんな状態からスタートしても 玉が半分ずつの状態に収束する
Slide 10
Slide 10 text
10 28 エーレンフェストの壺 1 2 3 4 5 6 ミクロな操作は可逆 マクロな観測事実は不可逆 時間の矢 どこで時間反転対称性が破れたのか? ※逆過程が等確率で起きる ※初期条件を忘れる
Slide 11
Slide 11 text
11 28 玉が1個の場合 玉が一つの場合、右側の壺の状態は二通り 1 玉がない 玉がある
Slide 12
Slide 12 text
12 28 玉が1個の場合 マルコフ遷移図 1 1 状態がくるくる回ってしまって定常状態にならない (偶数回と奇数回でそれぞれ必ず異なる状態になる) 1
Slide 13
Slide 13 text
13 28 エーレンフェストの壺(改) 1 2 3 4 5 6 • 2つ壺を用意する • 数字が書かれた玉をN個用意する • 一つの玉をランダムに選んでその玉をもう一方に移すが、 確率ε(0< ε <1)でなにもしない • 最初は片方にすべての玉を入れておく • 片方の壺の玉の数の時間発展を追う
Slide 14
Slide 14 text
14 28 玉が1個の場合 マルコフ遷移図 1 − 𝜀 同じ状態にとどまる可能性があるため、定常状態が存在する 1 − 𝜀 𝜀 𝜀 1
Slide 15
Slide 15 text
15 28 確率の時間発展と定常状態 1 tステップ目に玉がない確率 𝑝𝜙 𝑡 𝑝1 𝑡 tステップ目に玉がある確率
Slide 16
Slide 16 text
16 28 確率の時間発展と定常状態 𝑝𝜙 𝑡+1= 𝜀𝑝𝜙 𝑡 + (1 − 𝜀)𝑝1 𝑡 𝑝1 𝑡+1= (1 − 𝜀)𝑝𝜙 𝑡 + 𝜀𝑝1 𝑡 確率の時間発展 Ԧ 𝑝𝑡 = 𝑝𝜙 𝑡 𝑝1 𝑡 と書くと Ԧ 𝑝𝑡+1 = 𝑀 Ԧ 𝑝𝑡 𝑀 = 𝜀 1 − 𝜀 1 − 𝜀 𝜀 ただし
Slide 17
Slide 17 text
17 28 確率の時間発展と定常状態 Ԧ 𝑝1 = 𝑀 Ԧ 𝑝0 この𝑀を遷移行列、もしくはマルコフ行列と呼ぶ 確率ベクトルに𝑀をかける→時間が1ステップ進む 無限回かける→(もしあれば)定常状態が得られる Ԧ 𝑝∞ = 𝑀∞ Ԧ 𝑝0 Ԧ 𝑝2 = 𝑀 Ԧ 𝑝1 = 𝑀2 Ԧ 𝑝0 ⋮
Slide 18
Slide 18 text
18 28 確率の時間発展と定常状態 𝑀 = 𝜀 1 − 𝜀 1 − 𝜀 𝜀 マルコフ行列の最大固有値は1 最大固有値に対応する固有ベクトルが定常状態 Ԧ 𝑝∞ = 𝑀 Ԧ 𝑝∞ もし Ԧ 𝑝∞ が定常状態なら、 𝑀をかけても状態がかわらない に対応する固有ベクトルは Ԧ 𝑝∞ = 1/2 1/2 定常状態は2つの状態が等確率で現れる 1 =
Slide 19
Slide 19 text
19 28 玉が2個の場合 1 tステップ目に玉がない確率 𝑝𝜙 𝑡 𝑝1 𝑡 tステップ目に玉1がある確率 2 𝑝2 𝑡 tステップ目に玉2がある確率 𝑝12 𝑡 tステップ目に玉1,2がある確率 2 1
Slide 20
Slide 20 text
20 28 マルコフ遷移図(N=2) 1 2 2 1 𝜀 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 1 2 (1 − 𝜀) 𝜀 𝜀 𝜀
Slide 21
Slide 21 text
21 28 ミクロな対称性 1 確率1/2で玉1が選ばれ、かつ確率(1 − 𝜀)で玉を移す 1 2 (1 − 𝜀) 1 1 2 (1 − 𝜀) すべての2つの状態間の遷移確率は等しい 全ての過程と逆過程は等確率で起きる →可逆過程
Slide 22
Slide 22 text
22 28 遷移行列 𝑀 = 𝜀 𝑐 𝑐 0 𝑐 𝜀 0 𝑐 𝑐 0 𝜀 𝑐 0 𝑐 𝑐 𝜀 𝑐 ≡ 1 2 1 − 𝜀 Ԧ 𝑝∞ = 1/4 1/4 1/4 1/4 最大固有値に対応する固有ベクトル 十分時間が経つと、全てのミクロな状態は等確率で出現する →等重率の原理 1 2 2 1 = = =
Slide 23
Slide 23 text
23 28 粗視化 1 2 = = 玉の数字を見ないことにする 同一視
Slide 24
Slide 24 text
24 28 粗視化 十分時間がたった後に片方の壺を観察すると 𝑝0 = 1 4 𝑝1 = 1 2 𝑝2 = 1 4 玉がない 玉が1個 玉が2個 1 2 玉が1つ(=N/2)ある状態を観測する確率が最も高くなった
Slide 25
Slide 25 text
25 28 粗視化:玉がN個の場合 十分時間がたった後に片方の壺を観察すると 玉がない 玉が1個 𝑝0 = 1 2𝑁 𝑝1 = 𝑁 2𝑁 … 玉がn個 𝑝𝑛 = 𝐶𝑛 2𝑁 𝑁 N個の玉がある→ミクロな状態は2𝑁個 n個の玉がある状態→ 𝐶𝑛 個 𝑁
Slide 26
Slide 26 text
26 28 粗視化:玉がN個の場合 𝑁 = 1000 Nが大きい時にN/2を中心とするガウス分布に収束 玉の数がほぼN/2である状態が観測される 𝑛 𝑝𝑛
Slide 27
Slide 27 text
27 28 まとめ 現実のこの世界は・・・? • エーレンフェストの壺はミクロには可逆、マクロには不可逆 • ミクロとは「全ての玉の番号を知っている状態」 • マクロとは「玉の区別をなくした状態」 • ミクロにはすべての状態が等確率で出現する →等重率の原理 • マクロには玉が半分ずつに分かれる状態に収束する →時間の矢 • 古典的には「粗視化」が時間反転対称性を破る
Slide 28
Slide 28 text
28 28 参考 https://www.gakushuin.ac.jp/~881791/materials/Irreversiblity09.pdf スライドを作成するにあたり以下を参考にさせていただきました (本スライドの誤り、思い違いなどはすべて渡辺の責任です)