Slide 1

Slide 1 text

有關洋流渦輪機的水動力設計 辛敬業1, 王世雲1, 賴信安1, 李綺芳2, 蔡進發3, 邱逢琛3 1國立台灣海洋大學系統工程暨造船學系 2財團法人中國驗船中心 3國立臺灣大學工程科學及海洋工程學系 2019.08.12

Slide 2

Slide 2 text

1 Kuroshio (黑潮) ▪ High power density / Steady / Persistent ▪ 10(~30)GW : 20% ~ 20億瓦 (200萬瓩 : 核四270萬瓩)

Slide 3

Slide 3 text

2 FKT Design Requirement ▪ The prototype is 1/5 scale. ▪ The experiment model is 1/25 scale. ▪ Power produced by one turbine need to achieve 10kW. (10kW*2) ▪ 可以調節浮力,利用海流調節 深度,確保機器處於最高效率。 ▪ 受颱風、地震、水災影響小

Slide 4

Slide 4 text

3 S&T Research Scope ▪ 發展一洋流渦輪機的水動力設計方法 ▪ 應用的方法 ▪ 自升力線方法、升力面方法、邊界元素法(BEM)至 黏性流RANS方法 ▪ 在需要效率的設計問題上,整合不同精確度 (fidelity)的計算方法 ▪ 可以同時滿足時間與精度的要求,達到設計目標 ▪ 計算結果的確認 ▪ Verification: 不同方法 ▪ Validation: 實驗

Slide 5

Slide 5 text

4 Available Computational Methods ▪ Blade Element Momentum method ▪ Widely used by Wind Turbine Designs and Analysis ▪ Forces ▪ Boundary Element method ▪ Potential Flow ▪ Forces, Pressure Distributions ▪ & Lifting Surface & Lifting Line methods --- Propeller designs ▪ Viscous Flow RANS method ▪ Real Flow ▪ Analysis Design of Blade Geometry  Wind turbine?  Propeller?  Analysis Tools

Slide 6

Slide 6 text

5 Boundary Element Method ▪ Perturbation potential based ▪ Distributing the dipole and source on the surface panels ▪ Solving for the velocity potentials ▪ Velocity potential -> Velocities -> Pressure -> Forces ▪ Marine propellers --- Current Turbines ▪ Governing equation: ▪ 2 = ׭ [() 1 (:) − 1 : ] + ׭ Δ 1 : ▪ σ =1 , = σ =1 , − σ=1 σ ,. ∆, = 1,

Slide 7

Slide 7 text

6 Viscous Methods: STAR-CCM+ & SC/Tetra 15R 7.9R 16.1R Velocity Inlet Pressure Outlet Turbine Slip wall Reference Frame-Rotating • Realizable k-ε two-layer models is applied. • Approximately 4 million polyhedral elements 6

Slide 8

Slide 8 text

7 Foil Geometry NACA66/a=0.8meanline Number of blade 3 Radius(m) 0.4 Rotational Speed(rps) 4.13(Clockwise from inflow) Inflow velocities(m/s) 1.50, 2.00, 2.50, 3.00 Tip Speed Ratio (TSR) 6.92, 5.19, 4.15, 3.46 Analysis Tip Speed Ratio Axial Force coefficient Torque coefficient 2 1 2 Q Q C ARV  = 2 1 2 X X F C AV  = 2 nR TSR V  = 3 2 1 2 W W PW P nQ P C AV   = = Power coefficient

Slide 9

Slide 9 text

8 Verification: BEM vs. RANS

Slide 10

Slide 10 text

9 Verification: BEM vs. RANS TSR=5.19 r/R=0.50 r/R=0.90

Slide 11

Slide 11 text

10 Design of Blade Geometry  Propeller  Potential flow & Viscous Flow methods

Slide 12

Slide 12 text

11 Lagrange Multiplier Method (Lifting Line ) CX CQ Minimum Given Define the Lagrangian of this optimization problem and the discrete circulation distribution as follows: ) ( ) ), ( ( * Q Q X C C C r L − + =        =  = = − )) ( ( C )) ( ( C , 0 Q X * Q r C r C where C C subject to C min Q X Q X ] ... , [ , , 0 ) ( T 2 1 * M Q Q X C C L G where, X G    =          =       −  = = → → → →  ,...M , ) i Γ(r Γ i i 2 1 = = The optimum circulation distribution thus can be obtained by solving the equation: 11

Slide 13

Slide 13 text

12 Axial Force, Torque, Power Pitch (P/D), Camber (f/C) BEM(CTPAN-S) Optimum Circulation Distribution Lifting Surface Theory Lifting Line Theory + Lagrange multiplier method Design Method I.

Slide 14

Slide 14 text

13 Genetic Algorithm Method Design Complete 13 First generation Objective function Fitness Function Individual A Individual B Next generation Crossover & Mutation Satisfy the objective? No Base Design: Lagrange Multiplier method Max. C Q

Slide 15

Slide 15 text

14 Design Procedure Lagrange Multiplier method • Potential Flow methods • Design Loading Distributions • Design Blade Geometry: Pitch & Camber Genetic Algorithm • Potential Flow methods: BEM • Improve the Design: Pitch & Camber • Chord-length Designs • …… Analysis & Verification • Potential Flow BEM • Viscous Flow RANS • Verify the Design • Performance Curve

Slide 16

Slide 16 text

15 Design of the 20kW FKT 1/5 scale, 10kw*2 ◼D=5 m (RH /R=0.24) ◼V=1.5(m/s) ◼rpm=30 1/25 scale, Model Test ◼D=1 m CX CQ CPW BEM 0.70740 0.07905 0.41390 RANS 0.75950 0.08501 0.44510 Fx (N) Q (N-m) Pw (W) BEM 15594.74 4356.67 13686.73 RANS 16743.29 4685.14 14718.44 Fx (N) Q (N-m) Pw (W) BEM 623.79 34.85 547.47 RANS 669.73 37.48 588.74

Slide 17

Slide 17 text

16 Performance of 3-blade: BEM vs. RANS

Slide 18

Slide 18 text

17 Performances of different blade numbers Design

Slide 19

Slide 19 text

18 Performance Curve

Slide 20

Slide 20 text

19 Validation  Vs. NTU Experiment

Slide 21

Slide 21 text

20 Compared with Experimental Data ▪ Experiment modal is 1/25 scale. ▪ The experiment was carried out at National Taiwan University towing tank and the measured data were compared with RANS computational result.

Slide 22

Slide 22 text

21 Compared with Experimental Data ▪ The experimental data (red dot) of thrust coefficient obtained by two turbines rotating clockwise (left figure) and counter clockwise (right figure). ▪ Hydrodynamic performance of a towed floating Kuroshio current turbine Jin-Fa Tsai, Yi-Hsiang Liao, Forng-Chen Chiu, AWTEC2018

Slide 23

Slide 23 text

22 Compared with Experimental Data ▪ The experimental data (red dot) of torque coefficient obtained by two turbines rotating clockwise (left figure) and counter clockwise (right figure).

Slide 24

Slide 24 text

23 Compared with Experimental Data ▪ The experimental data (red dot) of power coefficient obtained by two turbines rotating clockwise (left figure) and counter clockwise (right figure).

Slide 25

Slide 25 text

24 Different Operating Conditions  Overall  One side malfunction  Inclined Inflow  Array

Slide 26

Slide 26 text

25 Overall FKT Performance Analysis Inflow Velocity (m/s) TSR CT CQ CPW Turbine Only 1.2 5.24 0.7581 0.0807 0.4225 Full FKT (steady) 1.2 5.24 0.7556 0.0804 0.4211 Full FKT (unsteady) 1.2 5.24 0.7658 0.0807 0.4224 ▪ It is obvious that whether there is a floating body or not, the differences are not large.

Slide 27

Slide 27 text

26 Overall FKT Performance Analysis ▪ The magnitude of force variation on each blade is about 2% (left figure). ▪ Total force on one turbine, the force fluctuation is only 0.6% (right figure). 2% 0.6%

Slide 28

Slide 28 text

27 Simulation of One Side Malfunction TURBINE 1 2 Inflow velocity (m/s) 1.5 1.5 Rotational speed (rps) 0.5 0 malfunction Turbine 1 Turbine 2 Axial Force (N) 16819.12 Axial Force (N) 4315.63 Torque (N-m) 4548.61 Torque (N-m) 1271.32

Slide 29

Slide 29 text

28 Top View

Slide 30

Slide 30 text

29 Inclined Inflow

Slide 31

Slide 31 text

30 FKT Array ▪ Body Force method

Slide 32

Slide 32 text

31 Conclusions ▪ Design Procedure of FKT & Validation ▪ Hydrodynamic Design: BEM & RANS ▪ Lagrange Multiplier method ▪ Genetic Algorithm ▪ Computational results are compared with experimental data and achieve the design goal ▪ Simulations of different possible operating conditions ▪ A practical and reliable current turbine design procedure

Slide 33

Slide 33 text

32 Thank You for listening [email protected]