Slide 1

Slide 1 text

Сетевой подход к анализу древнекитайских рифм Johann-Mattis List Department of Linguistic and Cultural Evolution Max Planck Institute for the Science of Human History Jena 2017/03/07 1 / 29

Slide 2

Slide 2 text

Введение Введение 2 / 29

Slide 3

Slide 3 text

Введение Рифмование Рифмование в общем Lose yourself in the music the moment you own it you better never let it go you only get one shot do not miss your chance to blow this opportunity comes once in a lifetime… (Eminem, “Lose yourself”, 2002) 3 / 29

Slide 4

Slide 4 text

Введение Рифмование Рифмование в общем Lose yourself in the music the moment you own it you better never let it go you only get one shot do not miss your chance to blow this opportunity comes once in a lifetime… (Eminem, “Lose yourself”, 2002) 3 / 29

Slide 5

Slide 5 text

Введение Рифмование Рифмование в общем Lose yourself in the music [-ɪk] ? [ɔi] the moment you own it [-ɪt] ? [ai] you better never let it go you only get one shot do not miss your chance to blow this opportunity comes once in a lifetime… (Eminem, “Lose yourself”, 2002) 3 / 29

Slide 6

Slide 6 text

Введение Рифмование Рифмование в общем music [-ɪk] own it [-ɪt] But Germans would rhyme employ and deny! Mai [-ɔi] neu [-ai] 3 / 29

Slide 7

Slide 7 text

Введение Рифмование как докaзательство Рифмование как докaзательство 燕 燕 于 飛, 下 上 其 音。 The swallows go flying, falling and rising are their voices; yān yān yú fēi xià shàng qí yīn 之 子 于 歸, 遠 送 于 南。 This young lady goes to her new home, far I accompany her to the south. zhī zǐ yú guī, yuǎn sòng yú nán 瞻 望 弗 及, 實 勞 我 心。 I gaze after her, can no longer see her, truly it grieves my heart. zhān wàng fú jí, shí láo wǒ xīn 4 / 29

Slide 8

Slide 8 text

Введение Рифмование как докaзательство Рифмование как докaзательство 燕 燕 于 飛, 下 上 其 音。 The swallows go flying, falling and rising are their voices; yān yān yú fēi xià shàng qí yīn 之 子 于 歸, 遠 送 于 南。 This young lady goes to her new home, far I accompany her to the south. zhī zǐ yú guī, yuǎn sòng yú nán 瞻 望 弗 及, 實 勞 我 心。 I gaze after her, can no longer see her, truly it grieves my heart. zhān wàng fú jí, shí láo wǒ xīn 4 / 29

Slide 9

Slide 9 text

Введение Рифмование как докaзательство Рифмование как докaзательство 燕 燕 于 飛, 下 上 其 音。 yān yān yú *pər xià shàng qí *qrəm 之 子 于 歸, 遠 送 于 南。 zhī zǐ yú *kʷəj, yuǎn sòng yú *nˤəm 瞻 望 弗 及, 實 勞 我 心。 zhān wàng fú jí, shí láo wǒ *səm 4 / 29

Slide 10

Slide 10 text

Введение Рифмование как докaзательство Рифмование как доказательство Chinese Text RW MCH Gù Yánwǔ Wáng (1980) Baxter (1992) OCBS-R 殷其靁 léi 靁 *lwoj 靁 A, 之部 靁 - 靁 - *-uj 在南山之陽 yáng 陽 *yang 陽 B, 陽部 陽 A, jiang, 陽部 陽 A, *ljang *-aŋ 何斯違斯 sī 斯 *sje 斯 A, 之部 斯 - 斯 - *-e 莫敢或遑 huáng 遑 *hwang 遑 B, 陽部 遑 A, huang, 陽部 遑 A, *wang *-aŋ 振振君子 zǐ 子 *tsiX 子 A, 之部 子 B, tziə, 之部 子 - *-əʔ 歸哉歸哉 zāi 哉 *tsoj 哉 A, 之部 哉 B, tzə, 之部 哉 - *-ə Comparing differences in rhyme identification for Ode 19.1《周南·殷其雷》 5 / 29

Slide 11

Slide 11 text

Введение Рифмование как докaзательство Рифмование как доказательство Разне факторы имеют влияние на рифмование (култура, язык, познание). Поэтому это сложно использовать рифмование как доказательство, особенно для исследования тех языков, которые засвидетельствованы только в текстах. 6 / 29

Slide 12

Slide 12 text

Введение Фонология древнекитайского языка Фонология древнекитайского языка долгая традиция лингвистической реконструции в Китае (началась с ученого Chén Dì 陳第, 1541 – 1606), 7 / 29

Slide 13

Slide 13 text

Введение Фонология древнекитайского языка Фонология древнекитайского языка долгая традиция лингвистической реконструции в Китае (началась с ученого Chén Dì 陳第, 1541 – 1606), первый прогрессивный этап в 20ом ст. с работами Карлгрена и китайских ученых Wáng Lí 王力 (1980) и Li Fang-kuei 李方桂 (1971), 7 / 29

Slide 14

Slide 14 text

Введение Фонология древнекитайского языка Фонология древнекитайского языка долгая традиция лингвистической реконструции в Китае (началась с ученого Chén Dì 陳第, 1541 – 1606), первый прогрессивный этап в 20ом ст. с работами Карлгрена и китайских ученых Wáng Lí 王力 (1980) и Li Fang-kuei 李方桂 (1971), второй важный этап в 80ых годах 20ого стол., когда Бакстер (1992), Старостин (1989), и Zhèngzhāng Shàngfāng (см. Zhèngzhāng 2003) предлагали реконструкции которые были очень похожи друг на друга, хотя и были независимо разработаны учеными (6 гласных, больше рифм, чем в традиционной литературе , итд.). 7 / 29

Slide 15

Slide 15 text

Введение Фонология древнекитайского языка Фонология древнекитайского языка Общая проблема реконструкции древнекитайской фонологии — это прозрачность и соизмеримость данных. Есть много разных реконструкций древнекитайского, и много разных аннотаций рифм в «Книге песен» (Shījīng 詩經), но с тех пор никто не сравнивал эти данные конкретно. 8 / 29

Slide 16

Slide 16 text

Сети Сети 9 / 29

Slide 17

Slide 17 text

Сети Сети в общем Сети в общем 10 / 29

Slide 18

Slide 18 text

Сети Сети в общем Сети в общем NODE (VERTEX) represents an object 10 / 29

Slide 19

Slide 19 text

Сети Сети в общем Сети в общем NODE (VERTEX) represents an object EDGE (LINK) represents a relation between objects 10 / 29

Slide 20

Slide 20 text

Сети Сети в общем Сети в общем can be tagged or labelled EDGE (LINK) represents a relation between objects 10 / 29

Slide 21

Slide 21 text

Сети Сети в общем Сети в общем can be tagged or labelled can be labelled and weighted 10 / 29

Slide 22

Slide 22 text

Сети Сети в примерах Сети в примерах Большинство структур в повседневной жизни и в науке возможно моделировать как сети: социальные сети: вершины (узлы) — люди, ребра — реляции (например дружба в Контакте, итд.), 11 / 29

Slide 23

Slide 23 text

Сети Сети в примерах Сети в примерах Большинство структур в повседневной жизни и в науке возможно моделировать как сети: социальные сети: вершины (узлы) — люди, ребра — реляции (например дружба в Контакте, итд.), филогенетические сети: вершины — языки или диалекты, ребра — генетическая близость, 11 / 29

Slide 24

Slide 24 text

Сети Сети в примерах Сети в примерах Большинство структур в повседневной жизни и в науке возможно моделировать как сети: социальные сети: вершины (узлы) — люди, ребра — реляции (например дружба в Контакте, итд.), филогенетические сети: вершины — языки или диалекты, ребра — генетическая близость, ..., 11 / 29

Slide 25

Slide 25 text

Сети Сетевые модели Сетевые модели Благодаря сетевым моделям, данные которые моделированы как графы анализируются очень быстро. Литература огромна, и часто ученым очень сложно находить лучший анализ для решения своих проблем. Поэтому иногда необходимо работать междисциплинарно, консултируя экспертов для анализа графов. 12 / 29

Slide 26

Slide 26 text

Сети Сетевые модели Сетевые модели 13 / 29

Slide 27

Slide 27 text

Сети Сетевые модели Сетевые модели 13 / 29

Slide 28

Slide 28 text

Сети Сетевые модели Сетевые модели 13 / 29

Slide 29

Slide 29 text

Сети Сетевые модели Сетевые модели 13 / 29

Slide 30

Slide 30 text

Сети Сетевые модели Сетевые модели 13 / 29

Slide 31

Slide 31 text

Сети Сетевые модели Сетевые модели Методы для выявления сетевых сообществ (community detection) являются специальным типом алгоритмов для разделения графа на части (partitioning algorithm). Они очень полезны для поиска естественных групп в сетях. 14 / 29

Slide 32

Slide 32 text

Рифмы и сети Рифмы и сети 15 / 29

Slide 33

Slide 33 text

Рифмы и сети Моделирование Моделирование 16 / 29

Slide 34

Slide 34 text

Рифмы и сети Моделирование Моделирование 16 / 29

Slide 35

Slide 35 text

Рифмы и сети Моделирование Моделирование 16 / 29

Slide 36

Slide 36 text

Рифмы и сети Моделирование Моделирование 16 / 29

Slide 37

Slide 37 text

Рифмы и сети Моделирование Моделирование 16 / 29

Slide 38

Slide 38 text

Рифмы и сети Моделирование Моделирование 16 / 29

Slide 39

Slide 39 text

Рифмы и сети Моделирование Моделирование 27.3.A 30.2.A 33.3.A 39.1.A 54.4.B 58.1.A 58.6.B 59.1.A 66.1.A 130.1.A 204.4.A 227.2.A sī 丝 qī 淇 móu 谋 qī 淇 qī 淇 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 zhī 之 zhī 之 qī 期 qī 期 méi 梅 méi 梅 yóu 尤 yóu 尤 lái 来 sī 思 lái 来 lái 来 sī 思 sī 思 sī 思 sī 思 sī 思 sī 思 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 sī 丝 móu 谋 zāi 哉 zāi 哉 zāi 哉 zāi 哉 16 / 29

Slide 40

Slide 40 text

Рифмы и сети Моделирование Моделирование 訧 蚩 謀 治 絲 淇 之 哉 霾 來 尤 思 16 / 29

Slide 41

Slide 41 text

Рифмы и сети Моделирование Моделирование Poem Stanza Verse Sect. Text Rhyme Pattern MCH OCBS 4 1 1 1 南有樛木、 木 - muwk C.mˤok 4 1 1 2 葛藟纍之。 纍 A lwij [r]uj 4 1 2 1 樂只君子、 子 - tsiX tsəʔ 4 1 2 2 福履綏之。 綏 A swij s.nuj 4. 樛木 南有樛木、葛藟纍之。 樂只君子、福履綏之。 南有樛木、葛藟荒之。 樂只君子、福履將之。 南有樛木、葛藟縈之。 樂只君子、福履成之。 17 / 29

Slide 42

Slide 42 text

Рифмы и сети Моделирование Моделирование Реконструкция рифмовой сети от аннотированных поэм проста. Проблемы возникают с взвешиванием если иероглифы рифмуются часто или редко друг с другом, с нормализацией длинных поэм, и с аннотацией специальных рифм (рифмы на двух слогах, рифмы в самой строке, итд.). 18 / 29

Slide 43

Slide 43 text

Рифмы и сети Моделирование Моделирование если два слова рифмуются друг с другом много раз в разных поэмах, это более важное доказательство чем спорадическое рифмование (→ use weighted networks to represent frequency) если куча слов рифмует в длинных строфах, у нас больше связей чем в коротких строфах, и мы должны нормализировать это (→ normalize rhyme connections in each stanza) рифмы в самой строке и на двух слогах часто следуют специальным законам рифмования (question not yet solved) 19 / 29

Slide 44

Slide 44 text

Рифмы и сети Моделирование Shījīng Rhyme Browser интерактивное веб-приложение показывает рифмы «Книги песен» согласно Бакстеру (1992) вместе с реконструкциями Бакстера и Сагара (2014) и Pān (2000, из Thesaurus Linguae Sericae). аппликация позволяет быструю инспекцию данных древнекитайского URL: http://digling.org/shijing 20 / 29

Slide 45

Slide 45 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r (List forthcoming) теория была впервые предложена С. А. Старостином (1989: 338-340), который предположил, что связи между рифмами с кодами на *-n и *-j объясняются добавочной кодой *-r с регулярным рефлексом -n в среднекитайском, 21 / 29

Slide 46

Slide 46 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r (List forthcoming) теория была впервые предложена С. А. Старостином (1989: 338-340), который предположил, что связи между рифмами с кодами на *-n и *-j объясняются добавочной кодой *-r с регулярным рефлексом -n в среднекитайском, дополнителные доказательства можно найти в родственных с китайском словах Тибетского (Hill 2014), 21 / 29

Slide 47

Slide 47 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r (List forthcoming) теория была впервые предложена С. А. Старостином (1989: 338-340), который предположил, что связи между рифмами с кодами на *-n и *-j объясняются добавочной кодой *-r с регулярным рефлексом -n в среднекитайском, дополнителные доказательства можно найти в родственных с китайском словах Тибетского (Hill 2014), Бакстер и Сагарт (2014) адаптировали эту идею в своей реконструкции древнекитайского, но количественная проверка до сих пор отсутствует. 21 / 29

Slide 48

Slide 48 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r (List forthcoming) теория была впервые предложена С. А. Старостином (1989: 338-340), который предположил, что связи между рифмами с кодами на *-n и *-j объясняются добавочной кодой *-r с регулярным рефлексом -n в среднекитайском, дополнителные доказательства можно найти в родственных с китайском словах Тибетского (Hill 2014), Бакстер и Сагарт (2014) адаптировали эту идею в своей реконструкции древнекитайского, но количественная проверка до сих пор отсутствует. Можно ли использовать граф «Ши цзин» для количественной проверки гипотезы Старостина? 21 / 29

Slide 49

Slide 49 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Граф «Ши цзин» в целом 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 8 2 1 2 1 3 2 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 2 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 4 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 3 1 1 1 1 1 1 2 2 1 1 1 2 1 1 3 1 2 3 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 2 2 1 2 1 1 3 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 3 1 2 1 1 1 1 1 1 1 3 2 1 1 3 2 1 3 2 1 3 1 3 1 1 4 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 3 1 6 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 2 1 1 1 2 1 1 4 1 4 1 2 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 3 5 1 1 1 4 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 5 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 5 1 1 1 5 1 2 1 2 1 3 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 4 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 1 1 1 3 1 1 2 1 4 1 2 1 1 2 3 1 1 2 1 1 1 1 1 1 3 1 1 4 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 1 1 5 1 1 1 1 1 2 1 1 1 1 1 3 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 3 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 3 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 2 1 2 1 2 5 1 4 1 1 1 1 1 1 2 3 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 7 1 1 2 3 1 2 3 1 1 1 3 1 1 2 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 3 2 2 1 2 1 1 1 1 1 3 2 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 3 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 2 1 1 1 4 2 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 5 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 3 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 4 5 1 5 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 3 4 3 1 1 1 2 3 2 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 4 1 1 1 1 3 1 1 2 9 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 7 1 1 1 1 3 5 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 2 1 1 1 1 3 2 3 3 2 1 3 1 1 2 1 2 1 1 3 4 1 1 4 5 1 1 1 2 1 2 1 4 1 1 1 1 2 1 2 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 6 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 5 1 1 1 2 2 1 1 2 2 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 2 4 1 2 1 1 2 2 1 1 1 1 3 1 1 1 1 3 4 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 3 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 2 1 1 1 3 1 3 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 3 5 2 1 2 2 2 1 1 1 1 1 2 4 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 4 2 2 1 1 1 2 1 3 5 2 1 2 1 1 4 1 2 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 4 2 2 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 1 1 3 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 4 3 2 1 2 1 5 4 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 皓 悠 巢 秋 受 慅 蕭 懰 遒 球 絿 旒 裒 救 騷 瑤 瀌 麃 消 嗷 桃 ⼑ 遙 膏 夭 號 苗 旐 ⾼ 曜 呶 謠 朝 燎 驕 郊 儦 勞 鑣 旄 叟 揄 慘 蹂 照 忉 周 垢 附 渥 瘁 屬 奏 ⽊ 濁 霂 楰 樹 數 耇 主 厚 ⽃ 醹 枸 匱 檖 棣 穗 利 侮 鍭 鞏 笱 後 瘉 愈 句 后 口 賓 年 甸 粼 溱 翕 姻 敖 親 ⽥ 暴 榛 悼 恌 蒿 零 謔 藐 堅 鷮 教 ⾂ 均 苓 蓁 傚 笑 寮 昭 蕘 巔 盜 鈞 賢 潦 鎬 濱 詢 駰 蘋 藻 嘵 昊 翹 翛 ⽑ 膋 搖 喬 譙 出 薈 萃 悸 退 蔚 訊 遂 荅 述 卒 沒 弗 律 ⼘ 裕 獄 粟 韘 甲 侯 渝 濡 愉 ⽎ 榆 婁 樞 業 涉 及 泣 隰 葉 濕 捷 楫 濈 玉 馵 藚 續 轂 樕 曲 族 取 駒 讀 諏 株 辱 饇 蔞 驅 椓 ⾕ 穀 屋 ⾓ 僕 束 ⿅ ⾜ 祿 獨 藍 襜 宋 詹 對 仲 忡 甚 弘 錦 臨 宮 鳩 考 孚 簋 ⽸ 軌 舅 卯 ⾸ 逑 酒 鴇 翿 合 陶 飽 覺 寶 棗 酬 稻 保 炮 罦 類 內 懟 隧 醉 悖 逵 仇 漕 苕 繡 ⽭ 袍 鵠 罶 憂 軜 休 ⾢ 求 廟 ⾈ 劉 慆 流 髦 滺 怓 遊 浮 囚 滔 優 銶 殽 紹 囂 酋 柔 觩 游 闊 衛 蹶 揭 酢 炙 踖 廓 赫 蓆 作 格 尺 戟 敬 客 昔 宅 舄 碩 庭 傑 柞 駱 諾 貊 弈 繹 圉 莫 斝 瞽 咢 度 錯 臄 席 庶 懌 恪 ⼣ 斁 柏 澤 若 奕 藿 石 濩 綌 搜 伯 落 白 濯 薄 才 溺 鞹 藉 壑 削 雒 活 軷 竭 獲 害 射 歲 外 褐 緒 野 旅 處 舞 所 ⼟ 假 宇 ⿉ ⿏ 下 楚 秬 ⽗ 滸 助 組 居 予 ⾺ 與 股 戶 夏 苦 ⼥ 輔 鱮 扈 虜 湑 俁 虎 顧 怙 阻 浦 魯 武 酤 栩 虞 舉 怒 暇 除 ⾬ 譽 ⿎ 暑 ⽻ 御 罟 哀 悲 違 霏 ⿑ 躋 坻 枚 隮 湄 歸 依 威 幾 迷 資 妻 懠 晞 ⾶ 蓍 屎 毗 郿 罪 飢 回 圍 氐 私 微 遟 塞 ⼫ 維 畿 祗 騑 葵 菲 韡 萋 厎 斐 湝 調 囿 伏 ⾐ 亟 同 贈 來 膍 狸 闋 戾 疚 勩 遲 漣 關 弟 指 薺 師 頎 姨 茨 穋 牧 裘 矣 婦 鮪 惠 時 ⿔ 瘵 飴 箕 梅 謀 哉 梓 逆 詩 泄 ⺟ 伾 蠆 邁 騏 竿 尤 駓 帶 期 丘 思 愒 儺 淇 厲 其 佩 ⽜ 霾 塒 萊 絲 姬 媒 蚩 茷 鼒 俅 滅 珌 疾 夷 鴟 漢 臺 基 噦 訧 憩 ⼤ 治 敗 之 有 裏 在 爵 圃 柘 蘀 稼 固 夜 惡 路 洳 瞿 故 訏 葭 補 豫 呱 去 貉 豝 呼 怯 淑 椐 穫 露 芋 茹 愬 據 寡 歗 袪 修 穧 績 知 祇 鵙 謫 適 斯 剔 益 辟 易 提 刺 狄 解 雌 篪 枝 攜 伎 ⽀ 圭 觿 帝 髢 揥 籥 翟 皙 的 雪 秣 艾 晣 惙 說 拜 閱 左 腓 ⼀ 七 吉 祁 蕨 騤 日 淒 棲 節 室 桋 結 麋 階 ⾎ 紑 黎 薇 喈 談 巖 嚴 斬 監 惔 濫 ⿓ 勇 卬 唐 姜 竦 動 尰 松 充 童 狼 稂 旁 牂 瞻 遑 怲 腸 杭 翔 梗 魴 藏 觥 璋 向 往 競 鄉 響 綱 珩 貺 瑲 抗 潀 畜 腹 復 嚏 寐 崇 從 濛 恫 東 蝀 攻 龐 誦 邦 豵 蒙 訩 穰 粻 空 公 訌 恭 亨 皇 傭 兵 尚 亡 泳 豐 毒 鞫 功 曀 菽 迪 戚 覆 蹙 季 奧 蓫 掌 薁 彊 詳 牆 狂 漿 讓 罔 鏘 兄 瀼 簧 望 相 上 傷 蒼 煌 筐 良 仰 襄 ⻑ 爽 盟 蝱 桑 喪 章 庚 商 京 傍 英 陽 湯 洸 祥 楊 荒 彭 臧 芒 堂 羌 剛 房 鍚 頏 豈 懷 體 罍 死 綏 靁 頹 總 僮 厖 縫 邛 共 容 庸 雙 衝 訟 ⽤ 葑 墉 雝 葦 禰 泲 ⼲ 爾 泥 藟 廛 貆 隼 沖 蓬 ⽕ 重 陰 穉 濃 顒 ⼯ 逢 廱 鍾 鏞 樅 凶 饔 聰 罿 履 樊 檀 餐 雷 ⾔ 澗 追 纍 虺 梁 ⾹ 涼 ⾏ 光 ⽅ 粱 雱 鏜 箱 防 慶 嘗 囊 康 張 享 衡 疆 倉 床 王 明 裳 ⿈ 將 揚 昌 岡 忘 痒 螗 祊 饗 場 蹌 斨 鶬 喤 洋 霜 ⽺ 卿 伉 常 央 羹 糧 僩 咺 選 壎 孌 爛 鴈 霰 粲 晏 貫 泮 簡 綣 岸 宴 旦 亂 怨 漙 願 兮 婉 彥 蕑 悁 卷 緡 孫 熯 顏 媛 展 袢 敦 寬 諼 萎 摧 隤 壞 轉 鍛 羨 ⾒ 援 館 反 焉 遺 畏 旃 ⼔ 砥 推 ⽮ 視 嵬 崔 涕 ⼭ 濟 唯 遷 偕 ⽔ 園 幡 近 菅 尾 邇 燬 僊 旨 醴 皆 痯 墠 愆 衍 幝 癉 板 踐 亶 管 阪 閟 禮 虔 妣 秭 丸 梴 連 諫 然 遠 兕 鱧 熏 芬 艱 乾 欣 亹 娑 蘭 珈 阿 渙 荼 可 河 詈 佗 ⿇ 砠 婆 那 難 痡 翰 差 吁 瘏 恤 肩 湛 毖 熱 繁 單 巘 間 閑 安 儇 閒 泉 殘 嘆 軒 密 番 窒 藩 ⽳ 垤 ⻄ 慄 耋 原 宣 歎 憲 ⾄ 蕃 還 川 過 掎 杝 焚 薖 遯 訛 池 多 錡 紽 聞 吪 磨 鯊 昆 峨 沱 磋 猗 波 他 蘿 歌 ⽪ 蛇 莪 破 馳 嗟 沙 羅 駕 縭 罹 瘥 羆 嘉 為 陂 議 犧 荷 它 儀 禍 娛 闍 宜 何 加 藘 施 ⽡ 靡 且 華 羖 虛 禦 圖 ⽛ 岵 杜 夫 吐 踽 樗 菹 廬 紵 ⽠ 苴 帑 徒 君 蓼 趙 餘 鶉 鳥 渠 輿 奔 少 摽 ⼩ 璊 啍 悄 家 罝 胥離 冔 塗 屠 乎 壺 鋪 旟 魚 舒 琚 書 紓 麌 午 蒲 都 辜 幠 黼 蘇 車 釜 椅 僚 烏 素 狐 盱 著 漘 邪 皎 舍 糾 徂 飧 祛 輪 騢 淪 囷 歆 三 深 今 騰 朋 洒 繩 浼 恆 綅 肱 升 崩 雄 憎 蒸 登 勝 夢 兢 陵 承 薨 懲 乘 男 ⼸ 增 雰 殄 縢 膺 陾馮 冰 掤 譖 琴 貧 云 殷 煁 門 林 芩 心 琛 ⾵ 南 ⾦ 忍 黮 隕 ⾳ 欽 僭 鬵 衿 興 雲 鰥 慇 痻 ⾠ 存 員 巾 肅 穆 駽 燕 郵 僛 盼 倩 局 蜴 蹐 匊 脊 篤 沐 綠 幽 膠 愚 瀟 輈 瘳 姝 躕 收 逅 犀 趨 隅 惟 蠐 芻 脂 藹 翽 葽 蜩 晨 煇 犉 萏 群 苑 錞 旂 煒 佽 柴 眉 塵 美 疧 荑 襭 袺 聊 條 翳 覯 甓 漏 惕 卑 咮 賀 佐 餱 ⽐ 媾 ⾖ 巷 丰 送 孺 飫 具 冠 欒 輯 冾 鋂 偲 栵 枕 儼 控 菡 簀 璧 敢 菼 瑕 膚 曹 匏 燼 頻 翩 泯 匹 抑 秩 怭 紕 四 吠 脫 鮮 瀰 拂 拔 喙 忽 茀 駾 兌 仡 肆 芹 替 引 盡 弔 嘌 胡 檻 錫 泚 帨 畀 牢 飄 終 地 融 裼 慱 包 橐 揖 鷊 慍 閣 誘 振 詵 吹 和 渭 妹 養 景 獻 厄 燔 幭 蟄 捋 祋 芾 俄 傞 冬 窮 汕 完 兩 蕩 簟 寢 召 倒 墐 玷 諗 駸 漂 要 涖 率 椒 先 晢 肺 耽 葚 鬈 環 貶 衎 槱 趣 春 麇 罕 慢 幪 設 勤 閔 蠻 徹 逸 恩 唪 侈 哆 弁 丱 蚤 ⾲ 柳 荍 餤 ⽢ 耘 畛 僾 逮 掇 永 蹈 涵 讒 胤 廣 壼 告 棄 務 鞠 育 賊 織 蜮 淠 夙 嘒 螣 戎 躬 軸 嶷 匐 忒 慝 域 極 背 克 力 ⾰ 直 輻 ⾊ 葍 侑 彧 字 ⿊ 肄 漆 瓞 挃 即 瑟 栗 櫛 垣 俶 陸 祝 六 飲 蠋 降 宿 几 濔 姊 焞 螽 燠 蟲 驂 宗 中 塈 負秠 使 耜 ⽿ ⽌ 晦 能 悔 以 忌 久 鯉 備 德 戒 式 意 ⾷ 億 翼 膴 喜 已 理 友 畝 事 敏 祉 緎 暱 潰 飾 熾 載 ⿆ ⼷ 貽 棘 國 異 福 息 北 富 馘 服 側 稷 則 特 寺 恃 汜 痗 祀 薿 ⼊ 誨 耔 試 起 屆 ⼜ 穡 飭 識 急 襋 祺 駟 奭 得 茂 朽 謂 愛 溉 鼛 莘 售 讎 昴 綯 妯 天 茅 裯 猶 芑 ⿒ ⼦ 涘 俟 杞 茲 海 舊 沚 否 宰 殆 玖 屺 諶 似 右 始 李 紀 饎 采 ⾥ 怠 位 ⼠ 洧 倍 趾 恥 史 仕 我 髮 租 撮 噎 奪 嘽 實 据 平 寧 清 贏 甥 靈 名 沼 星 楨 賦 逝 孼 舝 ⾆ 世 瀖 桀 越 烈 偈 冥 闥 ⽉ 達 楹 怛 況 瑩 曷 闕 櫱 鉞 旆 穟 伐 截 朅 發 渴 括 撥 ⻘ 翯 佸 葛 茇 熲 正 禋 禎 營 令 刑 傾 城 丁 甫 藇 嘏 噳 羜 許 祜 聘 成 涇 定 姓 政 馨 酲 爭 騁 領 苹 霆 菁 睘 炤 笙 躍 驚 盈 ⽣ 屏 征 聲 沮 語 渚 五 盬 祖 寫 脯 者 筥 稌 堵 旌 牲 聽 鳴 經 程 縈 究 皁 莠 冒 抽 櫜 擣 茆 ⼿ 埽 ⾩ 狩 壽 栲 醜 道 ⽼ 苞 集 咎 洲 杻 ⽞ 仁 淵 闐 ⼈ 矜 填 鳶 旬 申 ⾝ ⺠ 神 臻 新 褎 好 臭 報 魗 禱 戊 訓 罩 樂 較 鄰 嚶 電 顛 問 蹻 虐 順 造 秀 孝 草 牡 耄 熇 藥 鑿 駮 到 芼 綽 襮 櫟 沃 命 薪 陳 千 洵 信 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 5 1 1 1 1 1 1 1 2 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 3 1 2 1 2 1 2 3 2 1 1 1 2 3 2 1 1 1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 2 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 5 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 2 3 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 2 3 3 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 2 1 1 3 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 2 1 1 3 1 1 2 1 1 1 1 2 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 3 2 3 2 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 2 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 2 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 2 1 2 1 1 1 1 2 5 3 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 3 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 4 5 3 1 1 1 2 1 2 1 7 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 9 1 2 1 1 2 1 1 4 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 3 1 2 1 1 1 1 1 2 2 4 2 2 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 3 3 1 3 1 1 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 4 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 2 1 1 1 4 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 3 8 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 4 2 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 1 1 5 1 2 3 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 5 1 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 1 2 1 2 1 4 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 4 1 1 1 1 2 3 5 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 4 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 2 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 14 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 4 1 1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 4 2 5 2 2 1 1 4 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 6 1 2 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5 1 1 1 1 3 2 1 1 1 2 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 3 2 1 1 1 1 5 1 2 1 1 1 1 2 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 14 1 2 1 1 2 1 1 1 1 1 3 1 1 2 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 4 2 1 3 1 1 2 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 2 1 2 1 1 1 3 2 1 3 1 2 1 2 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 2 14 1 3 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 4 1 2 2 3 3 9 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 3 2 1 1 4 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 2 1 宴 巢 救 倉 籥 蚩 悔 恌 退 凶 卬 盱 衛 夷 霜 楚 填 陰 鎬 狩 ⽛ ⼸ 冥 貫 寺 羹 秀 訌 利 炮 沮 虜 茹 服 犧 諾 甚 甥 夭 兮 域 慆 摧 膍 餐 螣 秋 禦 憲 晦 滔 帝 鼒 暇 祺 叟 ⾶ 優 調 艱 畜 極 熱 罹 展 俶 殽 蕑 闐 丸 歆 竭 魚 魯 炤 華 紵 喬 雌 鵙 向 恤 媛 ⼯ 岡 相 基 琴 負 畿 淑 公 飴 兄 ⾠ 扈 ⿉ 乾 蹌 銶 申 喜 忍 京 ⼩ 戒 丘 愆 秠 縫 冔 塞 ⾒ 櫟 斬 殷 姬 軷 矣 宰 狐 擣 晣 ⼤ 屏 ⿎ 征 羜 慇 茂 作 憎 賦 雄 反 襋 閟 潀 織 苓 騰 城 漕 儺 顒 慶 膴 渚 姊 羆 好 飲 簋 釜 綌 所 舒 伾 上 圭 樗 禰 滸 鑣 漣 聞 肱 聲 葵 嘽 畝 倍 愬 類 側 原 忌 劉 鍛 ⿓ 復 流 竿 讎 稷 鉞 篪 輪 檀 泲 墠 霰 述 袪 爵 涘 秬 葑 剔 罍 遂 宜 懟 赫 鼛 遠 茆 加 狼 紹 萋 濛 伐 魗 達 陳 指 洋 腓 故 丁 忡 使 綣 騢 怠 零 訩 鰥 ⿒ 鱮 川 監 濱 路 ⼲ 騁 揥 冰 臭 蔚 增 祊 杞 信 樂 鋪 咺 洒 粼 我 掌 苕 岸 草 柞 宣 ⺟ 成 階 厖 旒 邪 儇 殆 尚 少 邛 ⾐ 僊 靁 ⾆ 柔 ⽿ 傚 聰 盬 假 考 戟 恥 萎 竦 仇 裘 纍 拜 譽旆 紓 彭 寫尺 敖 彥 實 虐 資 浦 歎 謀 ⾦ 渙 蹂 過 椅 頏淒 蠋 壽 姻 箕 姓翕 瓞 圖 糾 旁⾵奭 蘇 寬 崇 雷 久闥 旟 酒 簡 松 錯 斝 害 怯 偈 背 薇 陂 舊 張粻 東 輿 卷 孌 碩罦 ⼜ 斁 藥 殘 砥 克 麃 廛 藇 功 越 懷 洵 冒 喤 滺 蛇 罝 鞫 房 怒 今 訏 外 磨 熏 邇 塒 嘆 願璊 暑 搜 煁素 罩 親 租 ⽞ 蕭 磋 豈 韡 曷 躋 珈 獲 德 梁 始 傑 崩 綽 ⽌ 趾 藩 蹻 貺 菹 英 禋 難 蒿 朽 落 臺 寮 龐 綏 力 巖堅 備道 傾 瑤 呼 詩 僮 蓬 季 昌 舞 髮 禎 痻 姨 湄 霏 休 安 疆 漢 牆 鞹 咎 簧 隧 寶 瞻 綯 衍 ⾳ 翯 亡 稂 沱 玖 雙 燎 恭 妣 焞 輔 唯 恪 家 近 榛 沙 紽 肩 承 昭 賓 右 ⾺ 砠 旅 邦 爾 猗 浼 鞠 酬 組 奧 予 尤 嗟 ⾰ 馳 幝 騏 ⽕ 匱 怙 居 意 夫 已清 活稼 鏘 ⿊ 康 藟 遊 唐 囂 蒼 ⻘ 車 仁 ⼀ 瘁 膺 讓⽣ 鍚 ⾊ 武 俅 李 嘒 午 摽 績 薿 晞 鴈 麋 囿 杜 鏞 宮 楹 鳩 違 醜 婦 悼 貉 祗 笑 牂 飭 懠 漘 筥 婆 梅 葍 爛 酤 僭 ⾎ ⾬ 遺 珩 嵬 詳 澤 位 友 夙 撥 掎 名 南 伯 升 辟 孚 櫱 消 贏 問 哉 亹 顛 羌 均 翟 陾 嚏 澗 賊 饗 遒 滅 良 伏 集 ⽥ 堂 鳴 藐 ⿔ 蓆 桑 內 ⼊ 栗 虔 矜 去 狂 堵 儀 ⽗ 平 與 湛 明 妯 出 泮 黮 侑 圃 ⽉ 杭 蕨 教 苹 在 櫛 駰 遷 薪 据 祉 騷 呱 搖 菽 慝 報 依 ⼣ 祖 鷮 鴇 痯 瑲 翿 嚴 穉 微 穫 莘 闕 年 敬 告 ⿆ 毒 著 腹 昔 蘀 ⽤ 濟 總 格 虞 露 佸 謫 ⼫ 盈 到 騤 來 膏 ⾄ 駓 亶 ⽺ 旃 櫜 舉 衿 綅 瘵 興 曀 庶 芩 鶬 戎 娑 悠 仕 溺 解 脯 降 鏜 陽 屎 閱 其 巘 懌 傭 杻 還 桀 媒 梗 湯 旨 度 ⽪ 熇 秭 臻 萊 蟲 鱧 伎 維 芼 急 蕃 翼 鑿 俁 溉 羅 攜 洳 濫 怨 卯 書 往 鄰 挃 庭 粱 固 主 順 莠 語 娛 理 獄 駕 蘿 棣 椐 夜 羨 甸 榆 蜮 能 薨 哀 朋 ⼥ 瀌 璋 沼 囊 痡 試 談 穰 ⻑ 逢 號 闋 歲 蓍 慘 饎 沖 隮 舅 汜 踽 鮪 貆 億 暱 姜 毖 瞽 飾 褎 鬵 命 ⾢ 酲 峨 葛 修 ⿏ 揭 茨 翔 兢 罶 爽 為 阿 史 歌 涼 祁 垤 淠 ⼦ 罿 郿 ⽜ 訧 深 較 勝 舄 千 蒙 喪 紀 秣 有 錦 貽 易 除 抗 呶 繹 似 肄 ⿑ 敗 怛 歸 崔 霆 煌 ⽊ 屬 胥 梓 北 躬 後 雲 掤 襮 禮 選 務 騑 馮 枚 議 鳶 富 隕 幡 穡 管 嘗 趙 登 荒 濩 欣 陵 仡 忽 拂 茀 肆 群 苑 錞 ⽭ 蓫 ⾔ 荅 律 煇 晨 旂 犉 荷 猶 諶 囚 皆 贈 饔 中 臨 關 耄 隼 敏 昆 ⾖ 具 飫 室 穧 藏 孺 餱 ⽻ 孫 欽 共 然 佩 ⾷ 亂 席 誦 牧 撮 池 飽 薖 薈 得 圍 死 燠 政 逑 弘 覯 汕 衎 駸 諗 僛 倩 郵 盼 耽 慱 揖 捋 惕 鷊 麇 胤 蟄 漂 要 壼 春 卑 慍 鬈 環 簟 柳 條 蜩 吹 渭 葽 寢 蹈 妹 和 聊 涖 栵 蠻 養 駽 輯 率 燕 翳 完 景 冾 惟 蠐 嘉 盜 荑 犀 煒 脂 將 美 眉 厲 光 噦 遙 壺 餘 下 燬 旬 仲 寧 葦 菅 衡 耜 嗷 世 歗 瀼 琛 采 軒究 孝 氐 巔 柘 從 噎 踐 懲 廱 郊 錡 庚 繁 男 舍 茅 三 業 涉 濈 捷 韘 隰 泣 及 濕 葉 楫 甲 恫 噳 謂 享 多 俟 疚 弟 謠 勩 悖 臄 援 棲 字 吉 直 夏 聽 客 ⽳ 昊 帑 ⼷ ⼑ 翛 壎 豐 刺 婉 逆 石 迷 雰 濃 悲 栩 重 杝 翰 推 林 舝 河 ⺠ 亟 桃 思 裯 柏 適 即 薺 ⼔ 茷 祀 ⾩ 焚 苦 遑 瑩 祥 糧 識 旐 渴 ⽠ 白 可 悸 溱 熲 股 稻 棗 ⼠ 漙 岵 罪 霾 洧 翹 禱 觥 藉 板 ⽡ 軌 蹶 育 鯊 奕 縢 定 裳 乎 屆 奪 焉 茲 厎 保 祛 寡 履 廬 潰 ⾹ 日 陶 發 烏 容 覺 紑 ⼿ 癉 泄 疾 僚 都 泉 ⿈ 驂 蕘 卒 繩 ⽀ 醉 惔 許 領 那 追 黎 覆 傷 存 埽 匐 弈 愒 蓼 嘵 異 期 慅 慄 宅 壑 六 莪 他 私 誨 吁 牲 偕 怓 靡 飢 躍 緒 笙 芬 洸 皙 屺 國 蒲 恃 斐 枝 云 皇 飧 以 浮 闍 苴 漿 貊 窒 縈 戾 荼 淵 懰 式 駱 視 苞 珌 湑 處 心 晏 恆 棘 遯 羖 蝀 兵 痒 絲 戚 悁 亨 皎 惙 涇 忉 淇 忘 濔 ⽸ 求 合 令 吪 茇 體 螗 菲 藘 牡 黼 彊 照 軸 衝 顏 芑 勞 抽 諫 對 營 ⾥ 雪 神 起 ⾼ 稌 烈 佗 妻 尰 憩 詈 助 怲 髢 海 坻 琚 者 淪 訟 藍 酋 訛 破 況昴 穟 虺蠆 貧 的 瘏 雱 葭 密 暴 罟 洲 門 宇 甫 頹 彧 駮 蝱 訓 朅 ⽑ 奔 漆 ⼟ 天 事 幠 經 夢 充 襄 野 苗 旦 廓 旌 望 鍾 莫 渠 襜 諼 熯 髦 閒 閑 麌 說 迪 鈞 裏 寐 番 員 朝 蘋 梴 陸 鴟 皁 敦 棄 刑 狄 圉 几 孼 脫 姝 馨 穗 愚 吠 躕 泳 遲 輻 隤 ⽅ 邁 知 忒 同 隅 逅 趨 芻 丰 巷 控 送 枕 儼 菡 萏 瀟 幽 局 匊 輈 脊 收 秩 怭 匹 抑 頻 翩 泯 燼 瘳 沐 蹐 綠 蜴 膠 篤 泚 瀰 胡 檻 帨 ⽐ 膚 菼 晢 肺 椒 荍 罕 慢 兩 蕩 廣 永 蚤 ⾲ 盡 紕 替 閣 疧 塵 引 瑕 柴 敢 鮮 幪 佐 耘 畛 玷 貶 唪 賀 四 畀 飄 匏 牢 曹 嘌 弔 璧 恩 簀 錫 閔 勤 地 裼 逮 僾 融 終 傞 冬 俄 窮 涵 讒 襭 袺 幭 厄 祋 芾 鋂 穆 葚 先 掇 哆 墐 誘 包 餤 翽 藹 欒 媾 咮 ⽢ 冠 振 詵 槱 獻 趣 燔 弁 丱 偲 侈 肅 甓 倒 召 漏 臧 星 豫 啍 截 箱 鳥 防 益 酢 毗 何 ⾝ 祜 沃 斨 縭 徒 鶉 驚 則 ⻄ 袢 巾 球 觿 連 薄 熾 宗 師 ⾈ ⾸ 揚 阪 涕 惠 雒 吐 新 瘥 逝 痗 狸 顧 蒸 粲 宿 動 虛 炙 喈 ⾂ 爭 鯉 王 垣 床 塗 威 特 曜 結 佽 設 徹 橐 逸 兌 喙 駾 拔 芹 幾 辜 館 ⼈ 藻 ⿇ 左 墉 皓 沚 豝 戊 膋 悄 惡 嚶 廟 戶 施 電 耋 時 童 周 褐 薁 ⽔ 耔 裒 譙 袍 ⼘ 濡 馵 曲 愈 樕 醹 取 瘉 饇 濁 垢 附 笱 駒 耇 藚 穀 ⾓ 鍭 椓 ⿅ 侯 蔞 束 厚 婁 讀 渥 粟 僕 數 辱 ⾕ 愉 ⾜ 屋 鞏 續 樞 侮 族 渝 霂 株 后 ⽎ 樹 轂 裕 驅 枸 獨 ⽃ 諏 奏 楰 口 句 玉 祿 沒 醴 驕 受 宋 斯 君 蓁 樊 治 商 競 栲 萃 響 泥 靈 遟 鵠 卿 桋 湝 乘 福 正 間 芋 瀖 壞 虎 旄 繡 否 之 御 仰 囷 五 詢 闊 譖 兕 絿 ⽼ 單 詹 踖 雝 楨 藿 瞿 罔 游 鄉 魴 園 ⽮ 馘 聘 謔 豵 頎 庸 若 觩 射 央 筐 帶 艾 提 嶷 嘏 瑟 穋 攻 括 綱 祝 徂 螽 濯 ⼭ 芒 尾 削 剛 波 咢 補 菁 阻 儦 勇 睘 畏 訊 愛 蹙 節 緡 才 樅 駟 揄 章 空 檖 伉 轉 它 場 盟 載 弗 逵 腸 據 屠 離 回 ⾏ 常 塈 且 蘭 緎 僩 殄 造 售 程 楊 潦 祇 軜 傍 賢 禍 憂 差 七 息 B A 22 / 29

Slide 50

Slide 50 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Граф «Ши цзин» в целом 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 4 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 3 1 1 1 1 1 2 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 5 1 2 1 1 1 2 1 1 1 1 1 1 4 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 3 1 3 2 1 1 1 1 1 4 1 2 1 1 2 1 2 3 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 3 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 3 1 1 1 1 4 1 3 3 9 7 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 2 1 1 2 2 1 1 1 4 1 2 1 2 3 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 3 1 1 2 1 1 1 2 5 4 2 2 1 1 52 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 2 2 1 1 1 1 嚴 談 濫 斬 惔 監 相 彊 傷 競 梗 牂 旁 翔 怲 頏 唐 上 往 痒 魴 姜 蒼 腸 詳 瞻 遑 掌 彭 庚 襄 桑 岡 張 忘 芒 螗 英 荒 良 簧 湯 傍 楊 堂 抗 瀼 牆 仰 狼 狂 漿 鏘 兄 陽 稂 伉 臧 爽 長 煌 糧 筐 雱 涼 防 盟 卿 蝱 粻 羹 囊 倉 粱 剛 揚 房 京 箱 商 梁 洋 昌 珩 泳 亡 瑲 貺 兵 樅 鏞 光 慶 嘗 香 亨 享 羊 方 喪 黃 斨 王 鶬 皇 將 常 衡 穰 饗 卬 杭 向 罔 望 讓 藏 觥 璋 鍚 綱 響 洸 鄉 羌 裳 央 鏜 章 祥霜 場 喤 床 康 蹌 行 明 疆 祊 尚 廱 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 3 1 2 2 1 1 1 1 1 1 1 1 2 1 1 4 1 1 2 2 2 1 1 1 2 1 1 1 1 4 2 2 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 3 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 4 14 3 2 3 1 1 1 2 8 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 5 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 3 3 1 2 2 1 5 1 1 1 1 2 2 1 1 1 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 5 1 1 1 1 1 1 1 2 2 1 1 1 1 3 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 4 1 1 4 1 3 1 1 2 2 4 3 4 1 4 3 1 1 3 1 1 1 4 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 6 1 3 1 1 1 1 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 7 1 1 1 1 1 3 4 1 2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 4 1 1 1 1 1 3 1 3 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 5 1 3 1 4 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 4 1 5 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 4 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 2 1 1 3 1 1 3 2 1 2 1 2 4 1 1 1 1 1 1 1 3 1 1 1 2 1 2 1 1 2 1 2 2 2 1 1 2 1 1 2 2 2 2 1 2 3 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 3 2 1 3 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 5 1 2 4 1 3 1 1 1 1 1 1 1 3 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 3 1 1 1 1 3 3 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 1 1 5 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 3 1 2 1 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 3 1 1 4 1 2 1 2 1 3 1 3 1 2 1 1 1 3 1 1 1 1 4 1 1 1 1 1 1 1 1 1 5 2 1 1 2 1 2 1 1 1 2 1 1 1 2 4 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 6 1 1 1 1 1 3 1 2 1 1 2 1 1 2 4 1 1 1 1 2 3 1 2 1 1 1 2 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 2 1 2 1 1 1 11 1 1 1 1 1 1 1 1 1 3 1 1 1 2 2 3 2 1 1 1 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 3 1 2 5 2 2 1 1 1 3 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 11 1 1 1 1 1 1 1 1 1 1 2 1 1 1 填 民 翕 合 邑 矛 矜 霆 騁 驚 程 領 禋 縈 牲 禎 旌 姓 經 睘 聽 菁 盈 爭 政 生 馨 聲 征 酲 靈 涇 訓 楨 鳶 新 命 旬 神 臻 申 薪 戚 蹙 菽 奧 迪 瑩 夏 股 熲 順 稌 青 溱 玄 甸 親 粼 信 零 洵 姻 令 仁 鳴 苹 定 薁 聘 蓁 人 笙 顛 苓 淵 榛 鄰 均 巔 電 闐 賓 年 身 陳 田 千 軜 濱 堅 詢 臣 駰 賢 鈞 昊 慅 袍 仇 懰 逵 受 蘋 反 諼 遠 寬 焉 澗 然 怨 簡 僩 咺 綣 旦 岸 泮 晏 選 亂 貫 宴 管 愆 板 癉 踐 阪 墠 亶 諫 衍 孌 見 霰 援 羨 鴈 鍛 壎 晣 艱 噦 逝 揭 外 乾 軷 發 傑 朅 撥 褐 泉 奪 軒 髮 撮 殘 雪 拜 蠆 愒 大 泄 憩 旃 菅 邁 敗 單 原 闊 婆 娑 蘭 差 艾 巘 秣 渙 繁 歎 舌 竭 害 孼 世 歲 瀖 活 言 園 瘵 梴 丸 說 虔 閑 樊 闕 曷 茇 桀 況 月 旆 越 穟 烈 達 截 伐 鉞 櫱 閱 厲 帶 安 連 趙 皎 僚 鳥 糾 蓼 佗 那 杝 宣 它 掎 難 蕃 他 密 峨 過 鯊 瓦 多 吪 訛 池 錡 薖 阿 嘉 波 施 羅 沙 麻 犧 嗟 嘆 番 慄 憲 穴 耋 瑟 日 翰 嘽 節 藩 即 漆 歌 摽 莪 悄 少 小 粲 悁 轉 蕑 館 兮 卷 彥 爛 訊 萃 悸 退 蔚 出 遂 荅 婉 顏 漙 願 袢 璊 奔 漘 飧 鶉 君 淪 啍 囷 輪 弗 律 述 卒 沒 悖 類 內 醉 對 隧 懟 匱 檖 瘁 穗 利 洒 展 媛 昆 浼 熏 巾 存 慇 雲 辰 員 痻 舝 闥 茷 偈 佸 葛 括 怛 衛 蹶 渴 痯 芬 云 殷 欣亹 門 貧 幝 熯 聞 川 孫 緡 焚 遯 鰥 殄 隕 忍 雰 克 服 馘 息 麥 革 棘 福 識 背 哀 潰 悲 厎 萋 齊 騑 腓 霏 斐 躋 畿 菲 依 飢 遟 圍 妻 祗 幾 違 淒 遲 騤 私 棲 穋 試 熾 襋 穡 異 富 國 急 奭 貽 裘 疚 塈 又 牧 幡 滅 僊 惠 闋 勩 重 雝 壞 萎 纍 鴟 隤 敦 追 七 雷 屆 懷 頹 靁 遺 虺 推 駟 畏 摧 崔 嵬 麋 罍 綏 階 嘒 淠 饔 曀 動 厖 嚏 季 聰 凶 陰 邛 罿 墉 共 寐 衝 容 庸 訟 雙 葑 公 濃 用 棄 沖 勇 充 龍 竦 童 尰 松 總 工 逢 縫 僮 顒 檀 山 餐 遷 干 吉 廛 貆 湄 郿 微 肄 湝 回 尸 歸 飛 桋 蕨 罪 伏 關 囿 威 龐 從 攻 訌 傭 恭 迷 師 蓍 韡 毗 懠 屎 資 葵 茨 噎 還 垣 血 實 同 邦 晞 調 坻 頎 枚 衣 姨 疾 間 漣 肩 惙 閒 儇 豵 濛 蒙 蝀 訩 恫 空 蓬 誦 焞 氐 戾 結 維 膍 一 左 牛 臺 漢 蚩 霾 珌 塒 萊 諶 佩 飴 溉 贈 黎 祁 亟 來 謂 薇 塞 愛 喈 夷 起 鮪 膴 狸 矣 虛 踽 杜 紵 釜 禦 羖 吐 脯 寡 紓 寫 五 秬 怙 渚 盬 栩 湑 與 俁 語 穧 甫 茹 噳 岵 楚 筥 組 浦 緒 阻 據 穫 愬 呱 豫 嘏 訏 黼 藇 虜 補 羜 朋 崩 登 雄 憎 騰 恆 蒸 升 乘 膺 增 綅 掤 男 弓 懲 縢 鬵 承 勝 夢 陾 馮 兢 陵 繩 薨 欽 興 黮 冰 僭 音 衿 金 髢 芩 譖 林 琴 皙 枝 伎 觿 雌 圭 篪 支 攜 知 鵙 謫 斯 祇 提 刺 解 易 適 益 辟 剔 績 心 煁 狄 揥 帝 南 風 琛 今 三 肱 歆 深 恤 熱 痡 至 吁 靡 砠 毖 離 破 陂 荷 馳 紽 猗 縭 椅 磋 蛇 皮 羆 河 栗 櫛 瓞 据 我 租 挃 加 珈 窒 禍 垤 何 瘏 宜 議 蘿 為 罹 瘥 詈 可 儀 沱 磨 歗 駕 湛 修 翟 鼒 俅 紑 室 繹 舍 駱 塗 搜 蘇 弈 書 旟 狐 澤 著 的 烏 爵 素 柞 籥 奕 昔 戟 舄 車 恪 華 闍 薄 落 賦 白 盱 鞹 都 貊 諾 居 夕 斁 懌 藿 訧 格 射 蓆 作 濯 治 柏 客 廓 尺 琚 碩 赫 宅 若 舒 伯 炙 譽 度 錯 酢 且 踖 削 溺 藘 娛 淑 荼 呼 渠 輿 才 餘 雒 芋 貉 椐 祛 怯 柘 稼 帑 幠 壑 藉 鋪 惡夜 牙 徒 露 袪 濩 圃 辜 乎 綌 瞿 魚 邪 家 洳 罝 臄 御 瓜 席 咢 斝 庶 許 虎 助 豝 麌 葭 午 者 處 予 女 羽 黍 假 野 舉 徂 固 除 騢 故 路 蘀 圖 去 酤 下 堵 土 舞 宇 所 祖 馬 祜 冔 輔 菹 廬 暇 旅 蒲 屠 莫 壺 樗 夫 石 顧 沮 虞 胥 怒 苴 扈 滸 父 武 魯 楹 寧 成 清 冥 星 贏 刑 平 腹 嚶 宿 城 畜 復 營 覆 毒 鞫 球 秋 蕭 旒 揄 遒 皓 絿 罶 燠 鴇 怓 首 逑 天 莘 鳩 問 丁 傾 蓫 屏 鵠 優 慆 酋 銶 繡 喬 嘵 翹 搖 翛 呶 譙 苕 瑤 驕 膋 毛 瀌 忉 巢 謠 桃 刀 號 旐 苗 郊 嗷 消 麃 高 遙 膏 朝 勞 鑣 曜 儦 旄 夭 猶 罩 樂 茅 夙 虐 告 綯 綽 耄 駮 秀 褎 藐 好 教 造 較 藥 苞 埽 寶 鷮 罦 牡 抽 孝 潦 軌 保 翿 陶 廟 孚 笑 皁 莠 杻 昭 栲 臭 櫟 茂 襮 到 鑿 芼 沃 朽 寮 傚 暴 盜 敖 蒿 囚 蕘 恌 悼 囂 基 淇 伾 絲 雨 獲 姬 媒 駓 丘 竿 龜 箕 期 梅 其 謀 儺 恥 之 采 有 哉 恃 逆 始 似 殆 躍 詩 尤 騏 翯 思 暑 敬 圉 瞽 苦 鼠 鱮 庭 戶 鼓 罟 否 敏 芑 涘 裏 使 理 梓 海 沼 倍 史 宰 事 負 炤 齒 耔 汜 時 鯉 久 薿 忌 止 耳 玖 耜 李 士 趾 畝 杞 秠 洧 里 友 祉 已 沚 喜 悔 子 位 字 祀 痗 寺 婦 意 戒 載 入 式 怠 右 饎 茲 紀 屺 舊 仕 母 俟 在 以 晦 能 燎 裒 叟 蹂 周 照 慘 騷 紹 觩 流 滔 殽 求 擣 休 酬 游 飽 漕 劉 滺 炮 卯 悠 遊 柔 浮 稻 救 髦 憂 舟 棗 讎 陸 謔 六 祝 妯 熇 蠋 鼛 售 蹻 裯 甥 正 鞠 名 育 昴 俶 茆 禱 手 阜 舅 戊 簋 洲 集 究 醜 老 報 軸 草 道 咎 鎬 冒 缶 考 狩 藻 櫜 壽 酒 覺 魗 宮 躬 臨甚 錦 弘 飾 極 祺 暱 螣 忒 直 特 力 賊 緎 食 嶷 則 葍 色 匐 備 翼 德 侑 輻 億 黑 域 稷 誨 妣 尾 潀 閟 秭 禮 履 偕 忡 驂 飲 蟲 螽 降 宗 中 砥 宋 匕 視 醴 涕 皆 仲 燬 旨 近 矢 邇 鱧 兕 藍 襜 巖 詹 東 功 棣 鍾 薈 弟 隮 火 穉 薺 西 指 濟 葦 爾 體 唯 水 死 崇 泥 豈 豐 務 姊 藟 禰 隼 濔 泲 几 戎 側 慝 彧 得 飭 織 北 弋 蜮 *-əj *-ək *-əʔ *-aʔ *-in *-aŋ 22 / 29

Slide 51

Slide 51 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Сетевые сообщества Рассмотрение графа в целом не достаточно для поиска древнекитайских код. Но разделение графа на части с помощью классических методов для выявления сетевых сообществ может дать нам новую перспективу. Если сообщества которые были идентифицированы автоматически отражают разбиение слов с кодами *-j или *-n на три класса, это может служить дополнительным доказательством для коды *-r. 23 / 29

Slide 52

Slide 52 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Сетевые сообщества выявление сетевых сообществ с помощью Infomap (Rosvall and Bergstrom 2007) алгоритм разделяет граф «Ши цзин» в 345 сообществ все данные можно осматривать в интерактивной манере: http://digling.org/shijing/communities.html 24 / 29

Slide 53

Slide 53 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Мощность алгоритма Infomap 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 3 1 2 1 1 1 2 1 1 2 3 1 1 2 3 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 4 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 2 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 4 2 3 1 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 2 1 5 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 4 2 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 3 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 6 1 2 1 1 1 1 1 1 2 1 9 1 1 1 1 2 4 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 2 1 1 2 1 1 1 1 4 2 1 4 2 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 3 1 2 1 4 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 2 1 1 1 1 1 3 1 1 1 1 1 1 2 6 1 1 1 1 1 1 1 2 3 2 1 1 5 1 3 5 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 3 2 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 士 負 趾 事 耳 畝 耜 洧 秠 寺 樂 炤 茂 造 猶 躍 恥 采 騏 翯 倍 里 杞 沼 玖 宰 史 屺 怠 仕右 饎 李 母 媒 姬 駓 伾 絲 訧 治 之 詩 尤 恃 思 丘 期 儺 謀 其 箕 竿 龜 梅 淇 茲 久 哉 有 逆 俟 紀 否 殆 始 涘 似 舊 時 齒 喜 友 已 沚 祉 悔 子 使 荼 芑 海 裏 理 起 又 裘 耔 塈 直 福 革 力 息 棘 背 牛 基 臺 左 蚩 狸 鯉 鮪 萊 佩 諶 膴 飴 矣 霾 塒 穡 國 識 富 服 奭 麥 試 克 租 鼒 俅 瘏 紑 据 至 穋 夷 疚 牧 異 熾 珌 菲 祗 圍 遟 遲 私 畿 違 淒 愛 棲 謂 黎 來 騤 溉 依 弟 躋 幾 飢 厎 妻 隮 腓 斐 霏 哀 萋 喈 騑 悲 齊 潰 室 何 我 漢 垤 窒 贈 亟 祁 薇 塞 櫛 河 瓞 穴 挃 即 漆 耋 瑟 栗 宜 囿 威 伏 桋 蕨 漣 關 葵 迷 懠 肄 師 歸 毗 屎 資 坻 頎 枚 同 姨 衣 邦 湄 回 尸 晞 微 湝 飛 實 垣 還 日 節 翰 血 疾 番 嘽 憲 稷 翼 意 備 侑 德 億 戒 黑 誨 食 域 輻 特 極 色 則 忒 止 位 能 汜 薿 忌 晦 以 敏 在 梓 婦 載 入 痗 祀 式 *-ə *-əʔ 25 / 29

Slide 54

Slide 54 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Мощность алгоритма Infomap Если сравнить красную группу с синей группой, которые были идентифицированы алгоритмом Infomap, предложение очень близко к реконструкции Бакстера и Сагара (2014): из 74 слов которые были автоматически идентифицированы «красными», 59 реконструированы как -əʔ в системе Бакстера и Сагара. Из 39 слов, автоматически идентифицированных как «синие», 30 реконструированы как -ə. 25 / 29

Slide 55

Slide 55 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Коды на *-a[nrj] 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 3 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 5 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 1 3 1 1 4 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 嘆 安 閑 難 泉 彥 羨 粲 旦 援 鴈 岸 晏 爛 巘 乾 嘽 繁 漢 蕃 番 宣 歎 蘭 憲 單 軒 原 殘 那 翰 藩 渙 然 諫 板 遠 癉 亶 管 僊 墠 ⾔ 遷 園 連 漣 虔 焉 ⼭ ⼲ 垣 丸 諼 廛 咺 澗 貆 寬 熯 顏 痯 踐 媛 反 衍 愆 阪 罹 ⽪ 河 紽 磨 儀 佗 磋 池 差 婆 ⿇ 訛 娑 離 宜 錡 嘉 他 加 沙 多 儺 靡 左 嗟 犧 波 施 沱 駕 蛇 何 荷 陂 羆 過 歌 禍 詈 薖 馳 我 破 可 吪 它 為 椅 羅 ⽡ 議 A *-an *-aj *-ar *-an / *-ar 26 / 29

Slide 56

Slide 56 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Коды на *-a[nrj] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 3 1 2 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1 1 羆 蛇 紽 ⽪ 癉 遠 諫 渙 阪 板 衍 墠 蘭 訛 池 ⿇ 薖 娑 痯 差 管 婆 嘽 番 歎 難 翰 單 嘆 憲 繁 泉 亶 岸 然 援 反 羨 踐 藩 原 宣 漢 那 蕃 巘 垣 爛 粲 鴈 彥 乾 晏 旦 歌 施 離 過 靡 椅 虔 廛 焉 殘 僊 諼 寬 咺 愆 熯 顏 媛 澗 我 儺 詈 左 禍 可 它 波 馳 河 破 議 加 羅 何 ⽡ 貆 安 漣 遷 ⼲ 園 閑 ⾔ 丸 連 軒 他 ⼭ 錡 吪 沱 磋 荷 佗 駕 儀 陂 嘉 宜 罹 嗟 犧 沙 多 為 磨 B 26 / 29

Slide 57

Slide 57 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Коды на *-a[nrj] 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 安 焉 虔 園 遷 閑 廛 貆 ⾔ 漣 僊 ⼭ ⼲ 殘 軒 連 丸 C 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 安 焉 虔 園 遷 閑 廛 貆 ⾔ 漣 僊 ⼭ ⼲ 殘 軒 連 丸 D 26 / 29

Slide 58

Slide 58 text

Рифмы и сети Гипотеза коды -r Гипотеза коды -r: Коды на *-a[nrj] Благодаря анализу сообществ в графе «Ши цзин», мы можем исправить реконструкцию Бакстера и Сагара и предложить коррекцию сомнительных реконструкций данной системы. Структура сообществ которые мы нашли с помощью Infomap указывает что кода -r С. А. Старостина оставила свои следы в рифмах «Книги песен». Дополнительные исследования нужны для включения автоматического анализа в реконструкцию древнекитайского языка. 26 / 29

Slide 59

Slide 59 text

Перспектива Перспектива Перспектива 27 / 29

Slide 60

Slide 60 text

Перспектива С. А. Старостин был пионером не только в классической, но и в автоматизированной лингвистической компаративистике. В свое время использовать компьютер было намного сложнее чем сегодня, и препятствий было много. Сегодня, это все просто, но большинство лингвистов все еще избегает автоматизацию, в то время как неспециалисты анализируют лингвистические данные автоматически. Пора это изменить. Сетевые методы — хороший пример для мощности количественных методов в исторической лингвистике. Но нельзя забывать что это только первый шаг: без лингвистического анализа, автоматические методы нас ничему не выучат. 28 / 29

Slide 61

Slide 61 text

Перспектива Спасибо за Ваше внимание! 29 / 29