Slide 8
Slide 8 text
GPCA of histograms 6 / 1
Standard PCA in a Hilbert space
Standard PCA in a separable Hilbert space
Let H be a separable Hilbert space (H, ·, · , · ), and x1
, . . . , xn
be n (random) vectors in H.
Functional Principal Component Analysis (PCA) of
x1
, . . . , xn
∈ H obtained by diagonalizing the covariance operator
K : H → H:
Kx =
1
n
n
i=1
xi
− ¯
xn
, x (xi
− ¯
xn
), x ∈ H,
where ¯
xn
= 1
n
n
i=1
xi
is the Euclidean mean of x1
, . . . , xn
∈ H.
Eigenvectors ui
associated to eigenvalues σi
, with
σ1
≥ σ2
, · · · ≥ σn
≥ 0