Slide 1

Slide 1 text

Decoding the SAVE project data Tom Rushby [email protected] @tom_rushby Ben Anderson [email protected] @dataknut

Slide 2

Slide 2 text

Menu § Data collection – Loop data journey – What else are we collecting? – Constructing the dataset 2 § Exploring the data – Become an energy analyst § What next? Image (modified): ‘matrix’ by Gamaliel Espinoza Macedo https://www.flickr.com/photos/gamikun/

Slide 3

Slide 3 text

§ Data collection – Loop data journey – What else are we collecting? – Constructing the dataset Menu 3 Image (modified): ‘matrix’ by Gamaliel Espinoza Macedo https://www.flickr.com/photos/gamikun/ § Exploring the data – Become an energy analyst § What next?

Slide 4

Slide 4 text

Data collection 4 § Loop data journey (1) Photos by Patrick James | [email protected] | @pab_james

Slide 5

Slide 5 text

Data collection 5 § Loop data journey (2)

Slide 6

Slide 6 text

Data collection 6 § Loop data journey (3)

Slide 7

Slide 7 text

Data collection 7 Energy Loop Recruitment survey Time-use diaries Update survey SAVE ý þ þ þ § What are we collecting? Presenting today?

Slide 8

Slide 8 text

Constructing the dataset 8 Analysis and reports Survey updates Recruitment survey Energy Loop data

Slide 9

Slide 9 text

Constructing the dataset 9 § How much data? Ø Meter Clamps o (4,318 households) o 15 minute consumption (Wh) à 414,000 records/day o 10 second power (W) à 37m records/day Ø Collecting for ~3 years o ~2 Terabytes

Slide 10

Slide 10 text

Menu 10 § Data collection – Loop data journey – What else are we collecting? – Constructing the dataset § Exploring the data – Become an energy analyst § What next?

Slide 11

Slide 11 text

Exploring the data § We will use different time scales to reveal patterns in consumption Today we will look at data collected over: • Months • Weeks • Hours 11

Slide 12

Slide 12 text

Exploring the data 12 0.06 0.09 0.12 0.15 Thu May 19 Thu Jun 02 Thu Jun 16 Thu Jun 30 Thu Jul 14 Thu Jul 28 Thu Aug 11 Thu Aug 25 Thu Sep 08 Thu Sep 22 Thu Oct 06 Thu Oct 20 Thu Nov 03 Thu Nov 17 Thu Dec 01 Thu Dec 15 Thu Dec 29 Thu Jan 12 Thu Jan 26 Thu Feb 09 Thu Feb 23 Thu Mar 09 kWh Let’s look at this period 0.06 0.09 0.12 0.15 Thu May 19 Thu Jun 02 Thu Jun 16 Thu Jun 30 Thu Jul 14 Thu Jul 28 Thu Aug 11 Thu Aug 25 Thu Sep 08 Thu Sep 22 Thu Oct 06 Thu Oct 20 Thu Nov 03 Thu Nov 17 Thu Dec 01 Thu Dec 15 Thu Dec 29 Thu Jan 12 Thu Jan 26 Thu Feb 09 Thu Feb 23 Thu Mar 09 Date kWh Mean Median Data: Navetas Loop 15m (2016−06−11 to 2017−03−05, all SAVE data received) Mean of 15 minute intervals

Slide 13

Slide 13 text

13 Exploring the data Let’s look at this period

Slide 14

Slide 14 text

Exploring the data 14

Slide 15

Slide 15 text

15 Exploring the data

Slide 16

Slide 16 text

16 Exploring the data

Slide 17

Slide 17 text

17 Exploring the data

Slide 18

Slide 18 text

18 Exploring the data

Slide 19

Slide 19 text

Menu 19 § Data collection – Loop data journey – What else are we collecting? – Constructing the dataset § Exploring the data – Become an energy analyst § What next?

Slide 20

Slide 20 text

What next? More analysis (and data) to understand: § how households respond to different incentives across time § the characteristics of those who respond in the same way § how energy-using habits change 20

Slide 21

Slide 21 text

What next? More data! Using time-use data to better understand changes in energy using practices or routines 21 % point change in timing of reported laundry by weekday vs weekend and by time of day for each year (MTUS UK sub-sample weighted, for clarity, only 95% confidence intervals for Sunday included).[1] 1 Anderson, Ben. ‘Laundry, Energy and Time: Insights from 20 Years of Time-Use Diary Data in the United Kingdom’. Energy Research & Social Science 22 (2016): 125–36. doi:10.1016/j.erss.2016.09.004.

Slide 22

Slide 22 text

Thank you for listening. 22 Photo: ‘Learning’ by CollegeDegrees360 used under Creative Commons License