Slide 22
Slide 22 text
Data Strategy and Operation Center
参考⽂献
1. Li, L., Jing, H., Tong, H., Yang, J., He, Q., & Chen, B. C. (2017). Nemo: Next career move prediction with contextual
embedding. In Proceedings of the 26th International Conference on World Wide Web Companion. 505‒513.
2. Linmei, H., Yang, T., Shi, C., Ji, H., & Li, X. (2019). Heterogeneous graph attention networks for semi-supervised short
text classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 4821‒4830.
3. Liu, J., Ng, Y. C., Wood, K. L., & Lim, K. H. (2020). IPOD: A Large-scale Industrial and Professional Occupation
Dataset. In Conference Companion Publication of the 2020 on Computer Supported Cooperative Work and Social
Computing. 323‒328.
4. Meng, Q., Zhu, H., Xiao, K., Zhang, L., & Xiong, H. (2019). A hierarchical career-path-aware neural network for job
mobility prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 14‒24.
5. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heterogeneous graph attention network. In The
World Wide Web Conference. 2022‒2032.
6. Zhang, L., Zhou, D., Zhu, H., Xu, T., Zha, R., Chen, E., & Xiong, H. (2021). Attentive heterogeneous graph embedding
for job mobility prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 2192‒2201.