Slide 1

Slide 1 text

Commodity Machine Learning Past, present and future Andreas Mueller

Slide 2

Slide 2 text

What is machine learning?

Slide 3

Slide 3 text

Automatic Decision Making Spam? Yes No

Slide 4

Slide 4 text

Spam? Yes No

Slide 5

Slide 5 text

Programming Machine Learning

Slide 6

Slide 6 text

Machine learning is EVERYWHERE

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

Science Engineering Medicine ...

Slide 11

Slide 11 text

Commodity machine learning

Slide 12

Slide 12 text

past

Slide 13

Slide 13 text

+

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

dawn of open source tools...

Slide 16

Slide 16 text

The age of shell

Slide 17

Slide 17 text

Documentation? Testing?

Slide 18

Slide 18 text

Scikit-learn: User centric machine learning

Slide 19

Slide 19 text

.fit(X, y) .predict(X) .transform(X)

Slide 20

Slide 20 text

present

Slide 21

Slide 21 text

Choose your ecosystem.

Slide 22

Slide 22 text

Open! Documented! Tested!

Slide 23

Slide 23 text

Usability is key!

Slide 24

Slide 24 text

ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline

Slide 27

Slide 27 text

github.com/scikit­learn­contrib/scikit­learn­contrib

Slide 28

Slide 28 text

(near) Future

Slide 29

Slide 29 text

pip install scikit­learn==0.18rc2 0.18 for the release candidate:

Slide 30

Slide 30 text

sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection

Slide 31

Slide 31 text

results = pd.DataFrame(grid_search.results_)

Slide 32

Slide 32 text

labels → groups n_folds → n_splits

Slide 33

Slide 33 text

from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train, test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...

Slide 34

Slide 34 text

from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture

Slide 35

Slide 35 text

PCA() RandomizedPCA() PCA()

Slide 36

Slide 36 text

Gaussian Process Rewrite

Slide 37

Slide 37 text

Isolation Forests

Slide 38

Slide 38 text

Play from sklearn.neural_network import MLPClassifier Work import keras

Slide 39

Slide 39 text

pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(), None]} grid = GridSearchCV(pipe, param_grid)

Slide 40

Slide 40 text

40

Slide 41

Slide 41 text

(further) Future

Slide 42

Slide 42 text

Feature / Column names

Slide 43

Slide 43 text

from __future__ import sklearn.plotting

Slide 44

Slide 44 text

from __future__ import AutoClassifier

Slide 45

Slide 45 text

More Transparency

Slide 46

Slide 46 text

amueller.github.io @amuellerml @amueller [email protected]