Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.1k
Engineering Scikit-Learn V2
amueller
0
250
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
250
Scikit-learn: New project features in 0.17
amueller
0
79
Bootstrapping machine learning
amueller
0
110
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
140
Advanced Machine Learning with Scikit-Learn
amueller
1
520
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.6k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
2.9k
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Visualization
eitanlees
146
15k
Become a Pro
speakerdeck
PRO
26
5.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
GitHub's CSS Performance
jonrohan
1030
460k
Designing for Performance
lara
604
68k
Done Done
chrislema
182
16k
A designer walks into a library…
pauljervisheath
205
24k
The Cult of Friendly URLs
andyhume
78
6.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
240
Documentation Writing (for coders)
carmenintech
67
4.6k
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]