Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.1k
Engineering Scikit-Learn V2
amueller
0
270
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
270
Scikit-learn: New project features in 0.17
amueller
0
100
Bootstrapping machine learning
amueller
0
130
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
160
Advanced Machine Learning with Scikit-Learn
amueller
1
600
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.7k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
2.9k
Featured
See All Featured
Side Projects
sachag
455
43k
Writing Fast Ruby
sferik
628
62k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Optimizing for Happiness
mojombo
379
70k
How to Ace a Technical Interview
jacobian
279
23k
Done Done
chrislema
185
16k
Facilitating Awesome Meetings
lara
55
6.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]