Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.1k
Engineering Scikit-Learn V2
amueller
0
270
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
260
Scikit-learn: New project features in 0.17
amueller
0
96
Bootstrapping machine learning
amueller
0
120
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
150
Advanced Machine Learning with Scikit-Learn
amueller
1
580
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.6k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
2.9k
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
A designer walks into a library…
pauljervisheath
207
24k
Designing for humans not robots
tammielis
253
25k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Visualization
eitanlees
146
16k
Unsuck your backbone
ammeep
671
58k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Embracing the Ebb and Flow
colly
86
4.8k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Documentation Writing (for coders)
carmenintech
72
4.9k
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]