Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.2k
Engineering Scikit-Learn V2
amueller
0
290
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
290
Scikit-learn: New project features in 0.17
amueller
0
120
Bootstrapping machine learning
amueller
0
140
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
170
Advanced Machine Learning with Scikit-Learn
amueller
1
690
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.7k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
3k
Featured
See All Featured
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
76
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
100
Raft: Consensus for Rubyists
vanstee
141
7.3k
Accessibility Awareness
sabderemane
0
26
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Color Theory Basics | Prateek | Gurzu
gurzu
0
160
Automating Front-end Workflow
addyosmani
1371
200k
GraphQLとの向き合い方2022年版
quramy
50
14k
A Tale of Four Properties
chriscoyier
162
23k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
46k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
520
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]