Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.1k
Engineering Scikit-Learn V2
amueller
0
240
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
240
Scikit-learn: New project features in 0.17
amueller
0
77
Bootstrapping machine learning
amueller
0
110
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
130
Advanced Machine Learning with Scikit-Learn
amueller
1
490
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.5k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
2.9k
Featured
See All Featured
Building Applications with DynamoDB
mza
91
6.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Optimising Largest Contentful Paint
csswizardry
33
3k
A better future with KSS
kneath
238
17k
We Have a Design System, Now What?
morganepeng
51
7.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Adopting Sorbet at Scale
ufuk
73
9.1k
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]