Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.1k
Engineering Scikit-Learn V2
amueller
0
270
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
270
Scikit-learn: New project features in 0.17
amueller
0
100
Bootstrapping machine learning
amueller
0
120
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
160
Advanced Machine Learning with Scikit-Learn
amueller
1
600
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.6k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
2.9k
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Code Reviewing Like a Champion
maltzj
525
40k
Become a Pro
speakerdeck
PRO
29
5.5k
How to Ace a Technical Interview
jacobian
279
23k
It's Worth the Effort
3n
187
28k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
780
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]