Slide 1

Slide 1 text

Nullspace MPC Note: This slide deck is excerpted and edited from the doctoral public defense presentation โ€œNonlinear Model Predictive Control for Autonomous Vehicles: Enhancement via Simplified Physics-Aware Prediction and Decomposed Optimization,โ€ held on August 22, 2025. One-Shot Trajectory Optimization by MPPI (10000 samples) One-Shot Trajectory Optimization by Nullspace MPC (100 samples) Mizuho Aoki, Nagoya University

Slide 2

Slide 2 text

Background: Diversifying Mobility Designs 2 Reference [1] https://lexus.jp/models/?padid=from_not_ljptop_footer_carlineup [2] https://www.youtube.com/watch?v=QC6Q4Fge3uE [3] https://response.jp/article/2014/12/12/239488.html [4] https://www.youtube.com/watch?v=Bbw_smfOgVA [4] [2] [3] Mobilities with different degrees of freedom (DoF) are appearing. [1] 2 DoF 5 DoF 8 DoF 8 DoF Positive Aspects Negative Aspects Higher mobility performance will be beneficial. Capable of meeting a wide variety of user needs. Difficult to exploit performance of each vehicle. Keeping safety must be ensured for any vehicle. Consider the challenge of adding Autonomous Driving ability in these vehicles.

Slide 3

Slide 3 text

Diversity of Strategies Enabled by Increased Degrees of Freedom 3 2 DoF Vehicle 5 DoF Vehicle 8 DoF Vehicle Ex. How can parallel parking be achieved in a narrow space? Higher degrees of freedom allow for multiple strategies to achieve the same goal.

Slide 4

Slide 4 text

Control Target: What is 4WIDS Vehicle? 4 4WIDS Vehicle stands for Four-wheel Independent Drive and Steering Vehicle. Flexible driving behavior ๐›ฟ๐‘“๐‘Ÿ ๐›ฟ๐‘Ÿ๐‘Ÿ ๐›ฟ๐‘Ÿ๐‘™ ๐›ฟ๐‘“๐‘™ ๐‘‰๐‘Ÿ๐‘™ ๐‘‰ ๐‘Ÿ๐‘Ÿ ๐‘‰๐‘“๐‘Ÿ ๐‘‰๐‘“๐‘™ Tire angle (4 DoFs) ๐›ฟ๐‘“๐‘™ , ๐›ฟ๐‘“๐‘Ÿ , ๐›ฟ๐‘Ÿ๐‘™ , ๐›ฟ๐‘Ÿ๐‘Ÿ Wheel Velocity (4 DoFs) ๐‘‰๐‘“๐‘™ , ๐‘‰๐‘“๐‘Ÿ , ๐‘‰๐‘Ÿ๐‘™ , ๐‘‰ ๐‘Ÿ๐‘Ÿ 8 DoFs Parallel Shift Turn in Place Shift + Turn

Slide 5

Slide 5 text

Formulate a Simplified Prediction Model of 4WIDS Vehicle 5 8 DoF control input is reducible to 3 DoF with appropriate assumptions. ๐›ฟ๐‘“๐‘Ÿ ๐›ฟ๐‘Ÿ๐‘Ÿ ๐›ฟ๐‘Ÿ๐‘™ ๐›ฟ๐‘“๐‘™ ๐‘‰๐‘Ÿ๐‘™ ๐‘‰ ๐‘Ÿ๐‘Ÿ ๐‘‰๐‘“๐‘Ÿ ๐‘‰๐‘“๐‘™ Tire angle (4 DoFs) ๐›ฟ๐‘“๐‘™ , ๐›ฟ๐‘“๐‘Ÿ , ๐›ฟ๐‘Ÿ๐‘™ , ๐›ฟ๐‘Ÿ๐‘Ÿ Wheel Velocity (4 DoFs) ๐‘‰๐‘“๐‘™ , ๐‘‰๐‘“๐‘Ÿ , ๐‘‰๐‘Ÿ๐‘™ , ๐‘‰ ๐‘Ÿ๐‘Ÿ 8 DoF ๐‘‰ ๐‘ฅ ๐‘‰ ๐‘ฆ ๐œ” 3 DoF The vehicle is a rigid body. Wheels do not slip. Assumptions Holonomic vehicle model 4WIDS vehicle model Note: Since friction is neglected, motion patterns that exploit wheel slip are not modeled in the prediction.

Slide 6

Slide 6 text

Baseline Optimizer: Model Predictive Path-Integral (MPPI) Control 6 Sampled Trajectories Optimal Trajectory 1 2 3 Sampling control input sequences Calculate cost for each sample. Obtain optimal input sequence. Bad samples, higher costs Good samples, lower costs Weighted sum of samples Optimal input sequence obstacle obstacle obstacle MPPI is a type of MPC that uses sampling-based approach to obtain an optimal solution.

Slide 7

Slide 7 text

Issue: Balancing Task Priorities Through Weights is Difficult 7 Vehicle controller need to consider multiple objectives. But balancing weight between tasks is difficult. User Initial Position Reference Path โ—‹ Velocity limit โ—‹ Avoid obstacles of any shape โ—‹ Follow a reference path โ—‹ Smooth driving ( small acceleration ) โ—‹ Smooth operation of vehicle commands Task List Obstacle Optimal Trajectory

Slide 8

Slide 8 text

Ex. How to balance Collision Avoidance and Smooth Driving Minimize a scalar cost function Penalty for collisions Cost function Penalty for non-smooth motion ๐‘Š1 ๐‘Š2 ร— ร— Hard to find the best weight parameters. 8 Key Question: How can the best motion be found across multiple tasks?

Slide 9

Slide 9 text

Ex. How to balance Collision Avoidance and Smooth Driving Minimize a scalar cost function Penalty for collisions Cost function Penalty for non-smooth motion ๐‘Š1 ๐‘Š2 ร— ร— Hard to find the best weight parameters. Narrow down the solution stepwise. Set of all motions Set of motions without any collisions Select the smoothest motion Obtain the smoothest motion within the collision-free solution set. 9 Key Question: How can the best motion be found across multiple tasks?

Slide 10

Slide 10 text

10 ๐’ฎ๐’ฏ ๐‘– ๐’ฎ๐’ฏ ๐‘— ๐’ฎ๐’ฏ ๐‘— ๐’ฎ๐’ฏ ๐‘– ๐’ฎ๐’ฏ ๐‘– โˆฉ > ๐’ฎ๐’ฏ ๐‘— Introducing a Priority-Aware Operator โˆฉ to Narrow Down a Solution Set โ€ข Let ๐’™ be a solution vector of a motion planning problem. > โ€ข ๐“ข๐“ฃ๐’Š is a solution set of ๐’™ satisfying Task ๐“ฃ๐’Š , ๐“ข๐“ฃ๐’‹ is a solution set of ๐’™ satisfying Task ๐“ฃ๐’‹ โ€ข Now Task ๐“ฃ๐’Š has higher priority than Task ๐“ฃ๐’‹ , obtain an intersection set between them considering the task priority with a new operator . ๐’ฎ๐’ฏ ๐‘– โˆฉ > ๐’ฎ๐’ฏ ๐‘— is defined as follows. ๐’ฎ๐’ฏ ๐‘– โˆฉ๐’ฎ๐’ฏ ๐‘— โ‰  ๐œ™ (๐‘Ž) ๐‘–๐‘“ ๐’ฎ๐’ฏ ๐‘– โˆฉ๐’ฎ๐’ฏ ๐‘— = ๐œ™ (๐‘) ๐‘–๐‘“ โˆฉ > Here, (Closest satisfying ๐“ฃ๐’Š ) ๐’ฎ๐’ฏ ๐‘– โˆฉ > ๐’ฎ๐’ฏ ๐‘— (= ๐’ฎ๐’ฏ ๐‘– โˆฉ ๐’ฎ๐’ฏ ๐‘— )

Slide 11

Slide 11 text

Hierarchical Prioritization Framework Only for Linear Tasks 11 Question Key Idea Task: แ‰Š ๐€๐’™ = ๐’ƒ ๐ƒ๐’™ โ‰ค ๐’‡ Definition Linear Equality Linear Inequality Task is a set of conditions that solution ๐’™ tries to satisfy. Move solution ๐’™ to achieve a target task while keeping higher-level tasks satisfied. Task 1 > Task 2 > โ€ฆ > Task N High Priority Low Priority List of values to be found How can multiple tasks be achieved considering priorities?

Slide 12

Slide 12 text

Hierarchical Prioritization Framework Only for Linear Tasks 12 Question Key Idea Task: แ‰Š ๐€๐’™ = ๐’ƒ ๐ƒ๐’™ โ‰ค ๐’‡ Definition Linear Equality Linear Inequality Task is a set of conditions that solution ๐’™ tries to satisfy. Move solution ๐’™ to achieve a target task while keeping higher-level tasks satisfied. Task 1 > Task 2 > โ€ฆ > Task N High Priority Low Priority Apply Task 1 ๐’™โˆ— : tentative optimal solution All solution set for ๐’™ ๐€1 ๐’™ = ๐’ƒ1 , ๐ƒ1 ๐’™ โ‰ค ๐’‡1 Apply Task 2 ๐€2 ๐’™ = ๐’ƒ2 , ๐ƒ2 ๐’™ โ‰ค ๐’‡2 Apply Task 3 ๐€3 ๐’™ = ๐’ƒ3 , ๐ƒ3 ๐’™ โ‰ค ๐’‡3 This ๐’™โˆ— follows Task 1 > Task 2 > Task 3 priority. 2 1 3 2 1 1 List of values to be found How can multiple tasks be achieved considering priorities?

Slide 13

Slide 13 text

Mathematical Tools for Prioritization 13 Linear Inequality Linear Equality ๐€๐’™ = ๐’ƒ ๐ƒ๐’™ โ‰ค ๐’‡ ๐’™2 = ๐’™1 + ๐“ ๐€1 ๐’› , ๐€1 ๐’™1 = ๐’ƒ1 . ๐€1 ๐“ ๐€1 = ๐ŸŽ . Let ๐’™1 be a vector which satisfies a linear equality, Here ๐“ ๐€1 is a nullspace basis matrix of ๐€1 , Then ๐’™2 below always satisfies ๐€1 ๐’™2 = ๐’ƒ1 ๐€1 ๐’™2 = ๐€1 ๐’™1 + ๐“ ๐€1 ๐‘ง , = ๐€1 ๐’™1 + ๐€1 ๐“ ๐€1 ๐‘ง, = ๐€1 ๐’™1 + ๐ŸŽ = ๐’ƒ1 . arbitrary vector minimize ๐’—๐Ÿ ๐’—๐Ÿ 2 โˆต ๐ƒ๐Ÿ ๐’™ โˆ’ ๐’‡๐Ÿ โ‰ค ๐ŸŽ ๐ƒ๐Ÿ ๐’™ โˆ’ ๐’‡๐Ÿ โ‰ค ๐’—๐Ÿ ๐’”. ๐’•. Try to satisfy ๐ƒ๐Ÿ ๐’™ โ‰ค ๐’‡๐Ÿ while keeping ๐ƒ๐Ÿ ๐’™ โ‰ค ๐’‡๐Ÿ High Priority Low Priority Low Priority High Priority ๐ƒ๐Ÿ ๐’™ โ‰ค ๐’‡๐Ÿ ๐’—๐Ÿ = ๐ŸŽ ๐ƒ๐Ÿ ๐’™ โ‰ค ๐’‡๐Ÿ ๐ƒ๐Ÿ ๐’™ โ‰ค ๐’‡๐Ÿ ๐’—๐Ÿ โ‰  ๐ŸŽ ๐ƒ๐Ÿ ๐’™ โˆ’ ๐’‡๐Ÿ โ‰ค ๐’—๐Ÿ

Slide 14

Slide 14 text

Formulate Optimization Problem for Task p+1 14 Update tentative solution ๐’™โˆ— to satisfy Task p+1 ( ๐€๐‘+1 ๐’™โˆ— = ๐’ƒ๐‘+1 and ๐ƒ๐’‘+๐Ÿ ๐’™ โ‰ค ๐’‡๐’‘+๐Ÿ ) without disrupting the higher-level tasks (Task 1 > โ€ฆ > Task p) nullspace basis matrix of all from ๐€1 to ๐€p ๐’™โˆ— is a solution considering Task 1 > โ€ฆ > p ๐’™โˆ— + ๐™๐‘ ๐‘ง๐‘+1 is the updated solution considering Task 1 ~ p+1

Slide 15

Slide 15 text

Priority-Based Trajectory Optimization 15 Just stopping at the start point ๐’™ = ๐‘๐‘ฅ 0, ๐‘๐‘ฆ 0, ๐œƒ0, ๐‘ฃ๐‘ฅ 0, ๐‘ฃ๐‘ฆ 0, ๐œ”0, โ€ฆ , ๐‘๐‘ฅ ๐‘‡โˆ’1, ๐‘๐‘ฆ ๐‘‡โˆ’1, ๐œƒ๐‘‡โˆ’1, ๐‘ฃ๐‘ฅ ๐‘‡โˆ’1, ๐‘ฃ๐‘ฆ ๐‘‡โˆ’1, ๐œ”๐‘‡โˆ’1, ๐‘๐‘ฅ ๐‘‡, ๐‘๐‘ฆ ๐‘‡, ๐œƒ๐‘‡ ๐‘‡ Time series states for T steps: Find position velocity Set the initial pose at 0 step Follow the state update rules Limit velocity for all steps ๐€1 ๐’™ = ๐’ƒ1 ๐‘ซ1 ๐’™ โ‰ค ๐’‡1 Task 1 start ๐’ฎ๐’ฏ 1 ๐’™โˆ— โˆˆ ๐’ฏ 1 ๐’ฎ๐’ฏ 1 ๐’ฎ ๐’™ โˆˆ ๐’ฎ, Apply ๐’™โˆ—

Slide 16

Slide 16 text

Priority-Based Trajectory Optimization 16 Just stopping at the start point Passing through the via pose and reaching the goal ๐’™ = ๐‘๐‘ฅ 0, ๐‘๐‘ฆ 0, ๐œƒ0, ๐‘ฃ๐‘ฅ 0, ๐‘ฃ๐‘ฆ 0, ๐œ”0, โ€ฆ , ๐‘๐‘ฅ ๐‘‡โˆ’1, ๐‘๐‘ฆ ๐‘‡โˆ’1, ๐œƒ๐‘‡โˆ’1, ๐‘ฃ๐‘ฅ ๐‘‡โˆ’1, ๐‘ฃ๐‘ฆ ๐‘‡โˆ’1, ๐œ”๐‘‡โˆ’1, ๐‘๐‘ฅ ๐‘‡, ๐‘๐‘ฆ ๐‘‡, ๐œƒ๐‘‡ ๐‘‡ Time series states for T steps: Find position velocity Set the initial pose at 0 step Follow the state update rules Limit velocity for all steps ๐€1 ๐’™ = ๐’ƒ1 ๐‘ซ1 ๐’™ โ‰ค ๐’‡1 Pass through a via pose at Tmid step Reach to a goal pose at T step None ๐€2 ๐’™ = ๐’ƒ2 ๐‘ซ2 ๐’™ โ‰ค ๐’‡2 Task 1 Task 2 start goal via pose start ๐’ฎ๐’ฏ 1 โˆฉ > ๐’ฎ๐’ฏ 2 ๐’ฎ๐’ฏ 1 ๐’™โˆ— โˆˆ ๐’™โˆ— โˆˆ ๐’ฏ 1 ๐’ฏ 2 ๐’ฎ๐’ฏ 2 ๐’ฎ๐’ฏ 1 ๐’ฎ๐’ฏ 1 ๐’ฎ ๐’™ โˆˆ ๐’ฎ, Apply Apply ๐’™โˆ—

Slide 17

Slide 17 text

Priority-Based Trajectory Optimization 17 Just stopping at the start point Passing through the via pose and reaching the goal Moving more smoothly while passing the via pose. ๐’™ = ๐‘๐‘ฅ 0, ๐‘๐‘ฆ 0, ๐œƒ0, ๐‘ฃ๐‘ฅ 0, ๐‘ฃ๐‘ฆ 0, ๐œ”0, โ€ฆ , ๐‘๐‘ฅ ๐‘‡โˆ’1, ๐‘๐‘ฆ ๐‘‡โˆ’1, ๐œƒ๐‘‡โˆ’1, ๐‘ฃ๐‘ฅ ๐‘‡โˆ’1, ๐‘ฃ๐‘ฆ ๐‘‡โˆ’1, ๐œ”๐‘‡โˆ’1, ๐‘๐‘ฅ ๐‘‡, ๐‘๐‘ฆ ๐‘‡, ๐œƒ๐‘‡ ๐‘‡ Time series states for T steps: Find position velocity Set the initial pose at 0 step Follow the state update rules Limit velocity for all steps ๐€1 ๐’™ = ๐’ƒ1 ๐‘ซ1 ๐’™ โ‰ค ๐’‡1 Pass through a via pose at Tmid step Reach to a goal pose at T step None ๐€2 ๐’™ = ๐’ƒ2 ๐‘ซ2 ๐’™ โ‰ค ๐’‡2 Set zero acceleration for all steps None ๐€3 ๐’™ = ๐’ƒ3 ๐‘ซ3 ๐’™ โ‰ค ๐’‡3 Task 1 Task 2 Task 3 start goal via pose start goal start via pose ๐’ฎ๐’ฏ 1 โˆฉ > ๐’ฎ๐’ฏ 2 ๐’ฎ๐’ฏ 1 ๐’™โˆ— โˆˆ ๐’™โˆ— โˆˆ ๐’ฎ๐’ฏ 1 โˆฉ > ๐’ฎ๐’ฏ 2 ๐’™โˆ— โˆˆ โˆฉ > ๐’ฎ๐’ฏ 3 ๐’ฏ 1 ๐’ฏ 2 ๐’ฏ 3 ๐’ฎ๐’ฏ 2 ๐’ฎ๐’ฏ 1 ๐’ฎ๐’ฏ 1 ๐’ฎ ๐’™ โˆˆ ๐’ฎ, ๐’ฎ๐’ฏ 2 ๐’ฎ๐’ฏ 1 ๐’ฎ๐’ฏ 3 Apply Apply Apply ๐’™โˆ—

Slide 18

Slide 18 text

Example 18 Limitations of Linearly Represented Tasks Issue Task: แˆผ ๐‘จ๐’™ = ๐’ƒ, Task to avoid a circular obstacle How can nonlinear task expressions be considered in the priority-based optimization framework? Linear equality and inequality constructing a task are not sometimes expressive enough. ๐‘ซ๐’™ โ‰ค ๐’‡ } Converted to a linear task avoiding a straight wall Never reach the goal Question circular obstacle linearized boundary start goal

Slide 19

Slide 19 text

Nullspace MPC: Sample-Based Extension for Handling Nonlinearity ๐’ฎ๐‘–2๐‘” ๐’ฎ ๐’ฏ 1 ๐‘ ๐’ฎ ๐’ฏ 2 ๐ฟ Optimal Solution Considering Task Priorities Difficult to solve directly ๐’ฎ๐‘–2๐‘” ๐’ฎ ๐’ฏ 1 ๐‘ ๐’ฎ ๐’ฏ 2 ๐ฟ ๐’ฎ ๐’ฏ 1 ๐ฟ ๐’ฎ๐‘–2๐‘” ๐’ฎ ๐’ฏ 1 ๐‘ ๐’ฎ ๐’ฏ 2 ๐ฟ ๐’ฎ ๐’ฏ 1 ๐ฟ ๐’ฎ๐‘–2๐‘” ๐’ฎ ๐’ฏ 1 ๐‘ ๐’ฎ ๐’ฏ 2 ๐ฟ ๐’ฎ ๐’ฏ 1 ๐ฟ Obstacle Avoiding Trajectory Among the Samples via pose via pose via pose Approximately equivalent 19 Go through a via pose Select a via pose for avoiding obstacle driving smoothly Sampling-Based Optimizer Linear Task Linear Task ๐’ฏ 1 ๐ฟ: Drive smoothly ๐’ฏ 2 ๐ฟ: Avoid obstacles Nonlinear Task Linear Task ๐’ฏ 1 ๐‘: Drive smoothly ๐’ฏ 2 ๐ฟ: Decompose โ€œNonlinear Tasksโ€ into โ€œLinear Tasks and Nonlinear Parameter Searchโ€ Find Solution set reaching the goal

Slide 20

Slide 20 text

20 Where Nullspace MPC Stands Among Existing Methods Approach A: Wide application range Difficult priority weight tuning Approach B: Approach C: Combine strict task prioritization with soft weighting Minimize a single cost function Consider strict task prioritization (lexicographic optimization) MPPI Nullspace MPC HQP Clearer task priority than MPPI Smaller application range than MPPI Rigid task prioritization Limited application range Wider application range than HQP Less rigid priority guarantee than HQP (Hierarchical Quadratic Programming)

Slide 21

Slide 21 text

Start point is the current vehicle location. The vehicle try to follow the reference path. Set Start Pose and Reference Path 21 Start Reference Path Nullspace MPC 01

Slide 22

Slide 22 text

22 Start Local Goal Reference Path L [m] Set Local Goal Pose Nullspace MPC 02 Set a local goal ๐ฟ [m] ahead along the reference path, assuming perfect tracking.

Slide 23

Slide 23 text

Sample via poses according to gaussian distributions. There are K samples in total on each axis. 23 Start Reference Path Sample Via Poses Nullspace MPC 03 Local Goal

Slide 24

Slide 24 text

Select kth via point sample on each axis and plan a smooth trajectory trying to pass start and via points. 24 Start Reference Path Get Sample Trajectories Nullspace MPC 04 Local Goal

Slide 25

Slide 25 text

Select kth via point sample on each axis and plan a smooth trajectory trying to pass start and via points. 25 Start Reference Path Get Sample Trajectories Nullspace MPC 04 Local Goal

Slide 26

Slide 26 text

Select kth via point sample on each axis and plan a smooth trajectory trying to pass start and via points. 26 Start Reference Path Get Sample Trajectories Nullspace MPC 04 Local Goal

Slide 27

Slide 27 text

Select kth via point sample on each axis and plan a smooth trajectory trying to pass start and via points. 27 Start Reference Path Get Sample Trajectories Nullspace MPC 04 Local Goal

Slide 28

Slide 28 text

Select kth via point sample on each axis and plan a smooth trajectory trying to pass start and via points. 28 Start Reference Path Get Sample Trajectories Nullspace MPC 04 Local Goal

Slide 29

Slide 29 text

Select kth via point sample on each axis and plan a smooth trajectory trying to pass start and via points. 29 Start Reference Path Get Sample Trajectories Nullspace MPC 04 Local Goal

Slide 30

Slide 30 text

Select kth via point sample on each axis and plan a smooth trajectory trying to pass start and via points. 30 Start Reference Path Get Sample Trajectories Nullspace MPC 04 Local Goal

Slide 31

Slide 31 text

Plan smooth paths for all samples with gradient-based optimizer, and calculate cost of sample trajectories for sampling-based optimization. 31 Start Reference Path Calculate Cost for Each Sample Trajectory Nullspace MPC 05 Local Goal cost 1 = 3.07 cost 3 = 8.13 cost 2 = 2.35 cost K โˆ’ 2 = 5.19 cost K = 15.3 cost K โˆ’ 1 = 6.77 sample costs smaller the better Cost = costcollision_penalty +costsmooth_driving +costtracking_error +costcmd_change avoid obstacles drive smoothly track reference path accurately penalty for big command change

Slide 32

Slide 32 text

Convert sample costs into normalized weights. 32 Start Reference Path Calculate Sample Weights Nullspace MPC 06 Local Goal cost 1 = 3.07 cost 3 = 8.13 cost 2 = 2.35 cost K โˆ’ 2 = 5.19 cost K = 15.3 cost K โˆ’ 1 = 6.77 sample costs w 1 = 0.05 w 3 = 0.01 w 2 = 0.08 w K โˆ’ 2 = 0.02 w K โˆ’ 1 = 0.03 sample weights better samples get more weights w K = 0.005 Cost = costcollision_penalty +costsmooth_driving +costtracking_error +costcmd_change avoid obstacles drive smoothly track reference path accurately penalty for big command change

Slide 33

Slide 33 text

Get the Optimal Via Poses Nullspace MPC 07 Get the optimal via poses calculating the weighted sum of all sampled via poses. Start Reference Path Local Goal Prior Distribution Posterior Distribution Variational Inference 33

Slide 34

Slide 34 text

Get the Optimal Via Poses Nullspace MPC 07 Get the optimal via poses calculating the weighted sum of all sampled via poses. Start Reference Path Local Goal Prior Distribution Posterior Distribution Variational Inference 34

Slide 35

Slide 35 text

Optimal Via Poses Get the Optimal Via Poses Nullspace MPC 07 Get the optimal via poses calculating the weighted sum of all sampled via poses. Start Reference Path Local Goal 35

Slide 36

Slide 36 text

Optimal Trajectory Get the Optimal Trajectory Nullspace MPC 08 The optimal trajectory is one which passes start and optimal via points. Start Reference Path Local Goal 36

Slide 37

Slide 37 text

Simulation of Narrow Space Navigation 37 Sampling-Based MPC (MPPI) Nullspace MPC (Proposed) Nullspace MPC achieved 11% shorter trajectory length, 36% shorter travel time, with a higher success rate. Nullspace MPC required 12 times more computation time (though real-time operation was still feasible). In sequential goal-reaching simulations over 100 episodes,

Slide 38

Slide 38 text

Summary 38 How can the best motion be found across multiple tasks? Future Work โ€ข Improve computational efficiency. โ€ข Broaden applicability to more complex and realistic robotic systems, especially robots with nonlinear dynamics and high-dimensional states. Contribution โ€ข Proposed Nullspace MPC, a control framework that incorporates explicit task prioritization and accommodates diverse objectives โ€ข Demonstrated its effectiveness in narrow-space navigation of a 4WIDS vehicle, whose dynamics was approximated as holonomic motion, outperforming the MPPI controller. Strength of gradient-based approach Strength of sampling-based approach