Slide 90
Slide 90 text
For α < β in B, let ψαβ := e(α, β, αβ) = ϕβ αβ
− ϕα αβ
+ ϕαβ.
We claim that this works. To see this, fix α < β < γ in B. We
must show that e(α, β, γ) = ψβγ − ψαγ + ψαβ.
NOTE: For any α < β < γ < δ < κ, we have
e(β, γ, δ) − e(α, γ, δ) + e(α, β, δ) − e(α, β, γ) = 0.
Thus,
e(α, β, γ) = e(β, γ, αβγ) − e(α, γ, αβγ) + e(α, β, αβγ).
e(β, γ, αβγ) = −e(γ, βγ, αβγ) + e(β, βγ, αβγ) + e(β, γ, βγ)
= −e + e + ψβγ = ψβγ
Similarly for e(α, γ, αβγ) and e(α, β, αβγ).
This reduces to e(α, β, γ) = ψβγ − ψαγ + ψαβ, as desired.