Slide 1

Slide 1 text

COVID-19のデータ を可視化してみよう 阪医Python会 新歓2020ハンズオン

Slide 2

Slide 2 text

͓ئ͍ • ՄೳͰ͋Ε͹ɺإग़͠ͰͷࢀՃͰ͋Δͱ͏Ε͍͠Ͱ͢ɹɹɹɹ ʢڧ੍Ͱ͸͋Γ·ͤΜʣ • ໊લͷઃఆ • 40෼͝ͱʹ࠶઀ଓ • ࿥ըͷڐՄ Zoomʹ͍ͭͯ

Slide 3

Slide 3 text

ࢿྉʹ͍ͭͯ • github: • google colab: • GoogleυϥΠϒɿ ykohki/COVID-19_plot_training COVID19_python_plot.ipynb - Colaboratory ৽׻2020ϋϯζΦϯ_COVID-19 - Google υϥΠϒ githubͷϦϯΫઌʹ͢΂ͯͷࢿྉˍϦϯΫΛ ͓͍ͯ͋Γ·͢ʂ

Slide 4

Slide 4 text

͍͋ͭ͝͞

Slide 5

Slide 5 text

ࡕେҩֶ෦Pythonձ YouTubeʹͯಈըΛެ։தʂ େࡕେֶҩֶ෦ʹͯɺPythonʹ·ͭΘΔษڧΛ ߦ͏ֶੜͷஂମ

Slide 6

Slide 6 text

ࣗݾ঺հίʔφʔ • ໊લ • ग़਎ߴߍɾॴଐͳͲ • ͻͱ͜ͱ ࢀՃऀͷํ → Pythonձϝϯόʔɹͷॱ൪Ͱ ྫʣϓϩάϥϛϯάྺ ɹɹPythonΛֶΜͰ΍ͬͯΈ͍ͨ͜ͱ

Slide 7

Slide 7 text

ϋϯζΦϯͷਐΊํ 1. ϋϯζΦϯͷ໨త 2. Pythonʹ৮ΕͯΈΑ͏ 3. ٳܜ 4. ࣮ફʔϋϯζΦϯʔ 5. ࣭໰ˍࡶஊίʔφʔ

Slide 8

Slide 8 text

ϋϯζΦϯͷ໨త

Slide 9

Slide 9 text

ϋϯζΦϯͷ໨త • Pythonʹ৮ΕͯΈΔ • PythonʹڵຯΛ࣋ͬͯ΋Β͏

Slide 10

Slide 10 text

͜ͷϋϯζΦϯͰͰ͖Δ͜ͱ • COVID-19ͷ౷ܭσʔλʹ৮ΕͯΈΔ • PythonͰ͍Ζ͍ΖͳάϥϑΛ࡞Δ͜ͱ͕Ͱ͖Δ COVID-19 Python plot

Slide 11

Slide 11 text

Pythonʹ৮ΕͯΈΑ͏

Slide 12

Slide 12 text

Google Colab Λ࢖͍·͢ • Google͕։ൃ • Jupyter Notebookͱ͍͏Pythonͷͷ࣮ߦ؀ڥ ΛΦϯϥΠϯͰ࢖͑Δ • ແྉʂ • ؀ڥߏங͕ϥΫʹͰ͖Δ

Slide 13

Slide 13 text

Jupyter Notebookͷ͢͢Ί • ϊʔτϒοΫͱݺ͹ΕΔܗࣜͰɺ ɹ ࡞੒ͨ͠ϓϩάϥϜΛ࣮ߦɻ • ϓϩάϥϜͱͦͷ࣮ߦ݁Ռ΍ͦͷࡍͷϝϞΛɹɹɹɹɹɹɹ ؆୯ʹ࡞੒ɺ֬ೝͰ͖Δ

Slide 14

Slide 14 text

Google ColabΛ࢖ͬͯΈΑ͏ • GoogleυϥΠϒΛ։͘ˠ • ϑΥϧμ͝ͱϚΠυϥΠϒʹίϐʔΛ࡞੒ • ʮtest.ipynbʯΛ։͘ ৽׻2020ϋϯζΦϯ_COVID-19 - Google υϥΠϒ

Slide 15

Slide 15 text

Google ColabΛ࢖ͬͯΈΑ͏ • ηϧ • ʮShift + EnterʯͰηϧ͝ͱʹ࣮ߦ

Slide 16

Slide 16 text

͜Ε͔ΒPythonΛษڧ͍ͯ͘͠ͳΒ... anacondaΛ࢖ͬͯɺ ࣗ෼ͷPCʹPythonΛinstall͢Δͷ͕͓͢͢ΊͰ͢

Slide 17

Slide 17 text

ٳܜ 10෼ؒ

Slide 18

Slide 18 text

ޙ൒ઓ • ࣮ફɺखΛಈ͔͢ • ࣭໰ˍࡶஊίʔφʔ

Slide 19

Slide 19 text

COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ࢖༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ੔͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ

Slide 20

Slide 20 text

COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ࢖༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ੔͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ

Slide 21

Slide 21 text

࢖༻͢Δσʔλʹ͍ͭͯ • ͪ͜Βͷσʔλˠ • ࢹ֮తͳαΠτˠ CSSEGISandData/COVID-19: Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE ArcGIS Dashboards

Slide 22

Slide 22 text

σʔλͷܗࣜ COVID-19/csse_covid_19_data/csse_covid_19_time_series at master · CSSEGISandData/COVID-19 • time_series_covid19_confirmed_global.csv • time_series_covid19_deaths_global.csv • time_series_covid19_recovered_global.csv

Slide 23

Slide 23 text

σʔλͷܗࣜ https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv

Slide 24

Slide 24 text

PythonͰσʔλΛಡΈࠐΜͰΈΔ

Slide 25

Slide 25 text

ϥΠϒϥϦͱ͸ جຊతͳػೳ ࠷௿ݶඞཁͳ ΋ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗ෼Ͱ௥Ճ͢Δ ϥΠϒϥϦ 1ZUIPO جຊతͳػೳ ࠷௿ݶඞཁͳ ΋ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗ෼Ͱ௥Ճ͢Δ ϥΠϒϥϦ جຊతͳػೳ ࠷௿ݶඞཁͳ ΋ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗ෼Ͱ௥Ճ͢Δ ϥΠϒϥϦ جຊతͳػೳ ࠷௿ݶඞཁͳ ΋ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗ෼Ͱ௥Ճ͢Δ ϥΠϒϥϦ

Slide 26

Slide 26 text

༗໊ͳ&Α͘࢖͏ϥΠϒϥϦͨͪ /VNQZ 4DJQZ ਺஋ܭࢉɺಛʹଟ࣍ݩ഑ྻͷܭࢉʹ ศརɻ 4DJQZ͸Պֶٕज़ܭࢉʹɻ 1BOEBT දܭࢉ͕ಘҙɻ &YDFMͷΑ͏ͳදܗࣜͰɻ NBUQMPUMJC %ϓϩοτʹ࢖͏ɻ ͲΜͳ෼໺Ͱ΋࡞ਤ͢Δͱ͖ʹ࢖ ͏ɻ TFBCPSO NBUQMPUMJCΛϕʔεʹɺΑΓߴ౓ͳ ϓϩοτ͕Ͱ͖Δ TDJLJUMFBSO ػցֶशͷϥΠϒϥϦɻ

Slide 27

Slide 27 text

Pandas • ExcelͰ࡞ΔΑ͏ͳදܗࣜͷϑΝΠϧΛѻ͑Δ • csvͱ͸ɺΧϯϚͰ۠੾ΒΕͨσʔλͷ͜ͱɻ ʢcomma-separated valuesʣ • ΧϥϜͱΠϯσοΫε ΧϥϜ Π ϯ σ ỽ Ϋ ε

Slide 28

Slide 28 text

Google Colab΁

Slide 29

Slide 29 text

՝୊1 • 4/8/20ͷσʔλΛදࣔͤͯ͞ΈͯԼ͍͞ df_time_confirmed["4/8/20"].head()

Slide 30

Slide 30 text

COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ࢖༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ੔͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ

Slide 31

Slide 31 text

σʔλΛ͖Ε͍ʹ੔͑Δ • ͍Βͳ͍ΧϥϜʢྻʣͷ࡟আ • Country/Region͝ͱʹ·ͱΊΔ • ΧϥϜͱΠϯσοΫεͷ൓స • ࠃ໊ˠࠃ໊ίʔυʹม׵͢Δɹɹɹɹɹɹɹɹɹɹ ྫʣJapan→JPN ࣮ࡍͷίʔυΛݟͯΈ·͠ΐ͏ʂ

Slide 32

Slide 32 text

Google Colab΁

Slide 33

Slide 33 text

COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ࢖༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ੔͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ

Slide 34

Slide 34 text

͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ

Slide 35

Slide 35 text

͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ

Slide 36

Slide 36 text

࢖͏ϥΠϒϥϦ • ௨ৗͷplot • ΠϯλϥΫςΟϒͳplot matplotlib • Bokeh • Folium

Slide 37

Slide 37 text

Google Colab΁

Slide 38

Slide 38 text

՝୊2 • ޷͖ͳࠃΛબΜͰɺંΕઢਤΛදࣔͤͯ͞Έ ͍ͯͩ͘͞ # υΠπ country = "DEU" df_time_confirmed_sum[country].plot() plt.title(country) plt.ylim([0, today_max_round])

Slide 39

Slide 39 text

՝୊2 • ࢮऀ਺ɺճ෮ͨ͠ױऀ਺Ͱ΋ಉ༷ͷਤΛ࡞ͬ ͯΈ͍ͯͩ͘͞ # ࢮऀ਺ country = "DEU" df_time_deaths_sum[country].plot() plt.title(country) plt.ylim([0, today_max_round]) # ճ෮ͨ͠ױऀ਺ country = "DEU" df_time_recovered_sum[country].plot() plt.title(country) plt.ylim([0, today_max_round])

Slide 40

Slide 40 text

՝୊3 • 2ϲࠃΛબΜͰɺBokehͰΠϯλϥΫςΟϒͳ ંΕઢਤΛඳ͍ͯΈΑ͏ # தࠃͱ೔ຊ import pandas_bokeh pandas_bokeh.output_notebook() df_time_confirmed_sum[["CHN", "JPN"]].plot_bokeh.line()

Slide 41

Slide 41 text

·ͱΊ • ͸͡ΊͯPythonΛ৮ͬͯΈͯ • PythonͰ͸ଞʹ΋͍Ζ͍Ζͳ͜ͱ͕Ͱ͖·͢ • ·ͨམͪண͍ͨΒΦϑͰษڧձ΍Γ·͠ΐ͏ʂ

Slide 42

Slide 42 text

࣭໰ɾࡶஊίʔφʔ

Slide 43

Slide 43 text

Ξϯέʔτ https://forms.gle/k2uERvUWBjD8rrFo8