Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【阪医Python会 2020新歓ハンズオン】COVID-19のデータを可視化してみよう
Search
ykohki
April 16, 2020
Programming
0
1.3k
【阪医Python会 2020新歓ハンズオン】COVID-19のデータを可視化してみよう
COVID-19 python plot training
ykohki
April 16, 2020
Tweet
Share
Other Decks in Programming
See All in Programming
Python札幌 LT資料
t3tra
7
1.1k
ThorVG Viewer In VS Code
nors
0
540
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
15
3.9k
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
0
270
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
360
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
2k
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
37k
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
120
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
160
これならできる!個人開発のすゝめ
tinykitten
PRO
0
140
Deno Tunnel を使ってみた話
kamekyame
0
310
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.4k
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
6k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
49k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
54
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Exploring anti-patterns in Rails
aemeredith
2
220
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
780
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
420
Music & Morning Musume
bryan
46
7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
How to build a perfect <img>
jonoalderson
1
4.8k
Transcript
COVID-19のデータ を可視化してみよう 阪医Python会 新歓2020ハンズオン
͓ئ͍ • ՄೳͰ͋Εɺإग़͠ͰͷࢀՃͰ͋Δͱ͏Ε͍͠Ͱ͢ɹɹɹɹ ʢڧ੍Ͱ͋Γ·ͤΜʣ • ໊લͷઃఆ • 40͝ͱʹ࠶ଓ • ըͷڐՄ
Zoomʹ͍ͭͯ
ࢿྉʹ͍ͭͯ • github: • google colab: • GoogleυϥΠϒɿ ykohki/COVID-19_plot_training COVID19_python_plot.ipynb
- Colaboratory ৽2020ϋϯζΦϯ_COVID-19 - Google υϥΠϒ githubͷϦϯΫઌʹͯ͢ͷࢿྉˍϦϯΫΛ ͓͍ͯ͋Γ·͢ʂ
͍͋ͭ͝͞
ࡕେҩֶ෦Pythonձ YouTubeʹͯಈըΛެ։தʂ େࡕେֶҩֶ෦ʹͯɺPythonʹ·ͭΘΔษڧΛ ߦ͏ֶੜͷஂମ
ࣗݾհίʔφʔ • ໊લ • ग़ߴߍɾॴଐͳͲ • ͻͱ͜ͱ ࢀՃऀͷํ → Pythonձϝϯόʔɹͷॱ൪Ͱ
ྫʣϓϩάϥϛϯάྺ ɹɹPythonΛֶΜͰͬͯΈ͍ͨ͜ͱ
ϋϯζΦϯͷਐΊํ 1. ϋϯζΦϯͷత 2. Pythonʹ৮ΕͯΈΑ͏ 3. ٳܜ 4. ࣮ફʔϋϯζΦϯʔ 5.
࣭ˍࡶஊίʔφʔ
ϋϯζΦϯͷత
ϋϯζΦϯͷత • Pythonʹ৮ΕͯΈΔ • PythonʹڵຯΛ࣋ͬͯΒ͏
͜ͷϋϯζΦϯͰͰ͖Δ͜ͱ • COVID-19ͷ౷ܭσʔλʹ৮ΕͯΈΔ • PythonͰ͍Ζ͍ΖͳάϥϑΛ࡞Δ͜ͱ͕Ͱ͖Δ COVID-19 Python plot
Pythonʹ৮ΕͯΈΑ͏
Google Colab Λ͍·͢ • Google͕։ൃ • Jupyter Notebookͱ͍͏Pythonͷͷ࣮ߦڥ ΛΦϯϥΠϯͰ͑Δ •
ແྉʂ • ڥߏங͕ϥΫʹͰ͖Δ
Jupyter Notebookͷ͢͢Ί • ϊʔτϒοΫͱݺΕΔܗࣜͰɺ ɹ ࡞ͨ͠ϓϩάϥϜΛ࣮ߦɻ • ϓϩάϥϜͱͦͷ࣮ߦ݁ՌͦͷࡍͷϝϞΛɹɹɹɹɹɹɹ ؆୯ʹ࡞ɺ֬ೝͰ͖Δ
Google ColabΛͬͯΈΑ͏ • GoogleυϥΠϒΛ։͘ˠ • ϑΥϧμ͝ͱϚΠυϥΠϒʹίϐʔΛ࡞ • ʮtest.ipynbʯΛ։͘ ৽2020ϋϯζΦϯ_COVID-19 -
Google υϥΠϒ
Google ColabΛͬͯΈΑ͏ • ηϧ • ʮShift + EnterʯͰηϧ͝ͱʹ࣮ߦ
͜Ε͔ΒPythonΛษڧ͍ͯ͘͠ͳΒ... anacondaΛͬͯɺ ࣗͷPCʹPythonΛinstall͢Δͷ͕͓͢͢ΊͰ͢
ٳܜ 10ؒ
ޙઓ • ࣮ફɺखΛಈ͔͢ • ࣭ˍࡶஊίʔφʔ
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
༻͢Δσʔλʹ͍ͭͯ • ͪ͜Βͷσʔλˠ • ࢹ֮తͳαΠτˠ CSSEGISandData/COVID-19: Novel Coronavirus (COVID-19) Cases,
provided by JHU CSSE ArcGIS Dashboards
σʔλͷܗࣜ COVID-19/csse_covid_19_data/csse_covid_19_time_series at master · CSSEGISandData/COVID-19 • time_series_covid19_confirmed_global.csv • time_series_covid19_deaths_global.csv
• time_series_covid19_recovered_global.csv
σʔλͷܗࣜ https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
PythonͰσʔλΛಡΈࠐΜͰΈΔ
ϥΠϒϥϦͱ جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ
ࣗͰՃ͢Δ ϥΠϒϥϦ 1ZUIPO جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗͰՃ͢Δ ϥΠϒϥϦ جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗͰՃ͢Δ ϥΠϒϥϦ جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗͰՃ͢Δ ϥΠϒϥϦ
༗໊ͳ&Α͘͏ϥΠϒϥϦͨͪ /VNQZ 4DJQZ ܭࢉɺಛʹଟ࣍ݩྻͷܭࢉʹ ศརɻ 4DJQZՊֶٕज़ܭࢉʹɻ 1BOEBT දܭࢉ͕ಘҙɻ &YDFMͷΑ͏ͳදܗࣜͰɻ NBUQMPUMJC
%ϓϩοτʹ͏ɻ ͲΜͳͰ࡞ਤ͢Δͱ͖ʹ ͏ɻ TFBCPSO NBUQMPUMJCΛϕʔεʹɺΑΓߴͳ ϓϩοτ͕Ͱ͖Δ TDJLJUMFBSO ػցֶशͷϥΠϒϥϦɻ
Pandas • ExcelͰ࡞ΔΑ͏ͳදܗࣜͷϑΝΠϧΛѻ͑Δ • csvͱɺΧϯϚͰ۠ΒΕͨσʔλͷ͜ͱɻ ʢcomma-separated valuesʣ • ΧϥϜͱΠϯσοΫε ΧϥϜ
Π ϯ σ ỽ Ϋ ε
Google Colab
՝1 • 4/8/20ͷσʔλΛදࣔͤͯ͞ΈͯԼ͍͞ df_time_confirmed["4/8/20"].head()
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
σʔλΛ͖Ε͍ʹ͑Δ • ͍Βͳ͍ΧϥϜʢྻʣͷআ • Country/Region͝ͱʹ·ͱΊΔ • ΧϥϜͱΠϯσοΫεͷస • ࠃ໊ˠࠃ໊ίʔυʹม͢Δɹɹɹɹɹɹɹɹɹɹ ྫʣJapan→JPN
࣮ࡍͷίʔυΛݟͯΈ·͠ΐ͏ʂ
Google Colab
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ
͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ
͏ϥΠϒϥϦ • ௨ৗͷplot • ΠϯλϥΫςΟϒͳplot matplotlib • Bokeh • Folium
Google Colab
՝2 • ͖ͳࠃΛબΜͰɺંΕઢਤΛදࣔͤͯ͞Έ ͍ͯͩ͘͞ # υΠπ country = "DEU" df_time_confirmed_sum[country].plot()
plt.title(country) plt.ylim([0, today_max_round])
՝2 • ࢮऀɺճ෮ͨ͠ױऀͰಉ༷ͷਤΛ࡞ͬ ͯΈ͍ͯͩ͘͞ # ࢮऀ country = "DEU" df_time_deaths_sum[country].plot()
plt.title(country) plt.ylim([0, today_max_round]) # ճ෮ͨ͠ױऀ country = "DEU" df_time_recovered_sum[country].plot() plt.title(country) plt.ylim([0, today_max_round])
՝3 • 2ϲࠃΛબΜͰɺBokehͰΠϯλϥΫςΟϒͳ ંΕઢਤΛඳ͍ͯΈΑ͏ # தࠃͱຊ import pandas_bokeh pandas_bokeh.output_notebook() df_time_confirmed_sum[["CHN",
"JPN"]].plot_bokeh.line()
·ͱΊ • ͡ΊͯPythonΛ৮ͬͯΈͯ • PythonͰଞʹ͍Ζ͍Ζͳ͜ͱ͕Ͱ͖·͢ • ·ͨམͪண͍ͨΒΦϑͰษڧձΓ·͠ΐ͏ʂ
࣭ɾࡶஊίʔφʔ
Ξϯέʔτ https://forms.gle/k2uERvUWBjD8rrFo8