Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【阪医Python会 2020新歓ハンズオン】COVID-19のデータを可視化してみよう
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
ykohki
April 16, 2020
Programming
0
1.3k
【阪医Python会 2020新歓ハンズオン】COVID-19のデータを可視化してみよう
COVID-19 python plot training
ykohki
April 16, 2020
Tweet
Share
Other Decks in Programming
See All in Programming
CSC307 Lecture 09
javiergs
PRO
1
840
MUSUBIXとは
nahisaho
0
140
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
330
Oxlintはいいぞ
yug1224
5
1.4k
CSC307 Lecture 02
javiergs
PRO
1
780
並行開発のためのコードレビュー
miyukiw
0
1.2k
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
5
800
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
740
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
200
Python’s True Superpower
hynek
0
110
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
430
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Scaling GitHub
holman
464
140k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
95
Statistics for Hackers
jakevdp
799
230k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Transcript
COVID-19のデータ を可視化してみよう 阪医Python会 新歓2020ハンズオン
͓ئ͍ • ՄೳͰ͋Εɺإग़͠ͰͷࢀՃͰ͋Δͱ͏Ε͍͠Ͱ͢ɹɹɹɹ ʢڧ੍Ͱ͋Γ·ͤΜʣ • ໊લͷઃఆ • 40͝ͱʹ࠶ଓ • ըͷڐՄ
Zoomʹ͍ͭͯ
ࢿྉʹ͍ͭͯ • github: • google colab: • GoogleυϥΠϒɿ ykohki/COVID-19_plot_training COVID19_python_plot.ipynb
- Colaboratory ৽2020ϋϯζΦϯ_COVID-19 - Google υϥΠϒ githubͷϦϯΫઌʹͯ͢ͷࢿྉˍϦϯΫΛ ͓͍ͯ͋Γ·͢ʂ
͍͋ͭ͝͞
ࡕେҩֶ෦Pythonձ YouTubeʹͯಈըΛެ։தʂ େࡕେֶҩֶ෦ʹͯɺPythonʹ·ͭΘΔษڧΛ ߦ͏ֶੜͷஂମ
ࣗݾհίʔφʔ • ໊લ • ग़ߴߍɾॴଐͳͲ • ͻͱ͜ͱ ࢀՃऀͷํ → Pythonձϝϯόʔɹͷॱ൪Ͱ
ྫʣϓϩάϥϛϯάྺ ɹɹPythonΛֶΜͰͬͯΈ͍ͨ͜ͱ
ϋϯζΦϯͷਐΊํ 1. ϋϯζΦϯͷత 2. Pythonʹ৮ΕͯΈΑ͏ 3. ٳܜ 4. ࣮ફʔϋϯζΦϯʔ 5.
࣭ˍࡶஊίʔφʔ
ϋϯζΦϯͷత
ϋϯζΦϯͷత • Pythonʹ৮ΕͯΈΔ • PythonʹڵຯΛ࣋ͬͯΒ͏
͜ͷϋϯζΦϯͰͰ͖Δ͜ͱ • COVID-19ͷ౷ܭσʔλʹ৮ΕͯΈΔ • PythonͰ͍Ζ͍ΖͳάϥϑΛ࡞Δ͜ͱ͕Ͱ͖Δ COVID-19 Python plot
Pythonʹ৮ΕͯΈΑ͏
Google Colab Λ͍·͢ • Google͕։ൃ • Jupyter Notebookͱ͍͏Pythonͷͷ࣮ߦڥ ΛΦϯϥΠϯͰ͑Δ •
ແྉʂ • ڥߏங͕ϥΫʹͰ͖Δ
Jupyter Notebookͷ͢͢Ί • ϊʔτϒοΫͱݺΕΔܗࣜͰɺ ɹ ࡞ͨ͠ϓϩάϥϜΛ࣮ߦɻ • ϓϩάϥϜͱͦͷ࣮ߦ݁ՌͦͷࡍͷϝϞΛɹɹɹɹɹɹɹ ؆୯ʹ࡞ɺ֬ೝͰ͖Δ
Google ColabΛͬͯΈΑ͏ • GoogleυϥΠϒΛ։͘ˠ • ϑΥϧμ͝ͱϚΠυϥΠϒʹίϐʔΛ࡞ • ʮtest.ipynbʯΛ։͘ ৽2020ϋϯζΦϯ_COVID-19 -
Google υϥΠϒ
Google ColabΛͬͯΈΑ͏ • ηϧ • ʮShift + EnterʯͰηϧ͝ͱʹ࣮ߦ
͜Ε͔ΒPythonΛษڧ͍ͯ͘͠ͳΒ... anacondaΛͬͯɺ ࣗͷPCʹPythonΛinstall͢Δͷ͕͓͢͢ΊͰ͢
ٳܜ 10ؒ
ޙઓ • ࣮ફɺखΛಈ͔͢ • ࣭ˍࡶஊίʔφʔ
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
༻͢Δσʔλʹ͍ͭͯ • ͪ͜Βͷσʔλˠ • ࢹ֮తͳαΠτˠ CSSEGISandData/COVID-19: Novel Coronavirus (COVID-19) Cases,
provided by JHU CSSE ArcGIS Dashboards
σʔλͷܗࣜ COVID-19/csse_covid_19_data/csse_covid_19_time_series at master · CSSEGISandData/COVID-19 • time_series_covid19_confirmed_global.csv • time_series_covid19_deaths_global.csv
• time_series_covid19_recovered_global.csv
σʔλͷܗࣜ https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
PythonͰσʔλΛಡΈࠐΜͰΈΔ
ϥΠϒϥϦͱ جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ
ࣗͰՃ͢Δ ϥΠϒϥϦ 1ZUIPO جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗͰՃ͢Δ ϥΠϒϥϦ جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗͰՃ͢Δ ϥΠϒϥϦ جຊతͳػೳ ࠷ݶඞཁͳ ͷ ֦ுతͳػ ೳ ϥΠϒϥϦ ඪ४ϥΠϒϥϦ ࠷ॳ͔ΒJOTUBMM ͞Ε͍ͯΔ ࣗͰՃ͢Δ ϥΠϒϥϦ
༗໊ͳ&Α͘͏ϥΠϒϥϦͨͪ /VNQZ 4DJQZ ܭࢉɺಛʹଟ࣍ݩྻͷܭࢉʹ ศརɻ 4DJQZՊֶٕज़ܭࢉʹɻ 1BOEBT දܭࢉ͕ಘҙɻ &YDFMͷΑ͏ͳදܗࣜͰɻ NBUQMPUMJC
%ϓϩοτʹ͏ɻ ͲΜͳͰ࡞ਤ͢Δͱ͖ʹ ͏ɻ TFBCPSO NBUQMPUMJCΛϕʔεʹɺΑΓߴͳ ϓϩοτ͕Ͱ͖Δ TDJLJUMFBSO ػցֶशͷϥΠϒϥϦɻ
Pandas • ExcelͰ࡞ΔΑ͏ͳදܗࣜͷϑΝΠϧΛѻ͑Δ • csvͱɺΧϯϚͰ۠ΒΕͨσʔλͷ͜ͱɻ ʢcomma-separated valuesʣ • ΧϥϜͱΠϯσοΫε ΧϥϜ
Π ϯ σ ỽ Ϋ ε
Google Colab
՝1 • 4/8/20ͷσʔλΛදࣔͤͯ͞ΈͯԼ͍͞ df_time_confirmed["4/8/20"].head()
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
σʔλΛ͖Ε͍ʹ͑Δ • ͍Βͳ͍ΧϥϜʢྻʣͷআ • Country/Region͝ͱʹ·ͱΊΔ • ΧϥϜͱΠϯσοΫεͷస • ࠃ໊ˠࠃ໊ίʔυʹม͢Δɹɹɹɹɹɹɹɹɹɹ ྫʣJapan→JPN
࣮ࡍͷίʔυΛݟͯΈ·͠ΐ͏ʂ
Google Colab
COVID-19ͷσʔλΛPythonͰ ՄࢹԽͯ͠ΈΔ • ༻͢Δσʔλʹ͍ͭͯ • σʔλΛ͖Ε͍ʹ͑Δ • ͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ • ΠϯλϥΫςΟϒͳϚοϓΛ࡞ͬͯΈΔ
͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ
͍Ζ͍ΖͳάϥϑΛ࡞ͬͯΈΔ
͏ϥΠϒϥϦ • ௨ৗͷplot • ΠϯλϥΫςΟϒͳplot matplotlib • Bokeh • Folium
Google Colab
՝2 • ͖ͳࠃΛબΜͰɺંΕઢਤΛදࣔͤͯ͞Έ ͍ͯͩ͘͞ # υΠπ country = "DEU" df_time_confirmed_sum[country].plot()
plt.title(country) plt.ylim([0, today_max_round])
՝2 • ࢮऀɺճ෮ͨ͠ױऀͰಉ༷ͷਤΛ࡞ͬ ͯΈ͍ͯͩ͘͞ # ࢮऀ country = "DEU" df_time_deaths_sum[country].plot()
plt.title(country) plt.ylim([0, today_max_round]) # ճ෮ͨ͠ױऀ country = "DEU" df_time_recovered_sum[country].plot() plt.title(country) plt.ylim([0, today_max_round])
՝3 • 2ϲࠃΛબΜͰɺBokehͰΠϯλϥΫςΟϒͳ ંΕઢਤΛඳ͍ͯΈΑ͏ # தࠃͱຊ import pandas_bokeh pandas_bokeh.output_notebook() df_time_confirmed_sum[["CHN",
"JPN"]].plot_bokeh.line()
·ͱΊ • ͡ΊͯPythonΛ৮ͬͯΈͯ • PythonͰଞʹ͍Ζ͍Ζͳ͜ͱ͕Ͱ͖·͢ • ·ͨམͪண͍ͨΒΦϑͰษڧձΓ·͠ΐ͏ʂ
࣭ɾࡶஊίʔφʔ
Ξϯέʔτ https://forms.gle/k2uERvUWBjD8rrFo8