Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

{ eventType: PageViewEvent, 3mestamp: 1413215518, viewerId: 1234, sessionId: 646cf6694c550a24, pageKey: profile-view, viewedProfileId: 4321, trackingKey: invita3on-email, ... etc. metadata about what content was displayed... }

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

{ eventType: PageViewEvent, 3mestamp: 1413215518, viewerId: 1234, sessionId: 646cf6694c550a24, pageKey: profile-view, viewedProfileId: 4321, trackingKey: invita3on-email, ... etc. metadata about what content was displayed... }

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

{ eventType: ProfileEditEvent, 3mestamp: 1413215518, profileId: 1234, old: { loca3on: "London, UK", industry: "Financial Services"}, new: { loca3on: "Brussels, Belgium", industry: "SoUware"} }

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

No content

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

No content

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

Kafka at scale •  LinkedIn: 1.1 trillion (1.1⨯1012) events per day peak: 18 M events/sec, 3.8 GB/sec •  Netflix: 400 billion (4⨯1011) events per day peak: 8 M events/sec, 17 GB/sec •  Uber, Twitter, Yahoo, Spotify, etc. •  http://www.confluent.io/blog/apache-kafka-hits-1.1-trillion-messages-per-day-joins-the-4-comma-club (Sept 2015) https://engineering.linkedin.com/kafka/running-kafka-scale (March 2015) https://engineering.linkedin.com/blog/2016/01/whats-new-samza (January 2016) http://www.slideshare.net/wangxia5/netflix-kafka (March 2015) https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

No content

Slide 49

Slide 49 text

No content

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

No content

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

No content

Slide 56

Slide 56 text

No content

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

No content

Slide 59

Slide 59 text

No content

Slide 60

Slide 60 text

No content

Slide 61

Slide 61 text

No content

Slide 62

Slide 62 text

No content

Slide 63

Slide 63 text

No content

Slide 64

Slide 64 text

No content

Slide 65

Slide 65 text

No content

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

No content

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

No content

Slide 70

Slide 70 text

No content

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

No content

Slide 75

Slide 75 text

No content

Slide 76

Slide 76 text

No content

Slide 77

Slide 77 text

No content

Slide 78

Slide 78 text

No content

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

No content

Slide 81

Slide 81 text

No content

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

No content

Slide 84

Slide 84 text

References 1.  Tyler Akidau, Robert Bradshaw, Craig Chambers, et al.: “The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing,” Proceedings of the VLDB Endowment, volume 8, number 12, pages 1792–1803, August 2015. http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf 2.  Shirshanka Das, Chavdar Botev, Kapil Surlaker, et al.: “All Aboard the Databus!,” at ACM Symposium on Cloud Computing (SoCC), October 2012. http://www.socc2012.org/s18-das.pdf 3.  Pat Helland: “Immutability Changes Everything,” at 7th Biennial Conference on Innovative Data Systems Research (CIDR), January 2015. http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf 4.  Nathan Marz and James Warren: “Big Data: Principles and best practices of scalable realtime data systems.” Manning, April 2015, ISBN 9781617290343. http://manning.com/marz/ 5.  Martin Kleppmann: “Designing data-intensive applications.” O’Reilly Media, to appear. http://dataintensive.net 6.  Martin Kleppmann and Jay Kreps: “Kafka, Samza and the Unix philosophy of distributed data.” IEEE Data Engineering Bulletin, December 2015. http://martin.kleppmann.com/papers/kafka-debull15.pdf 7.  Jay Kreps: “Why local state is a fundamental primitive in stream processing.” 31 July 2014. http://radar.oreilly.com/ 2014/07/why-local-state-is-a-fundamental-primitive-in-stream-processing.html 8.  Jay Kreps: “Questioning the Lambda Architecture.” July 2014. http://radar.oreilly.com/2014/07/questioning-the-lambda- architecture.html 9.  Jay Kreps: “I ♥︎ Logs.” O'Reilly Media, September 2014. http://shop.oreilly.com/product/0636920034339.do 10.  Praveen Neppalli Naga: “Real-time Analytics at Massive Scale with Pinot.” 29 Sept 2014. http:// engineering.linkedin.com/analytics/real-time-analytics-massive-scale-pinot

Slide 85

Slide 85 text

No content