Slide 1

Slide 1 text

Green phytoplanton Daniel Vaulot Sydney - 2019-03-20

Slide 2

Slide 2 text

Outline Roscoff team Eukaryotic picoplankton Green picoplankton Prasinophytes clade VII Mamiellophyceae What's next ? 2 / 46

Slide 3

Slide 3 text

Rosco 3 / 46

Slide 4

Slide 4 text

La Station Biologique de Rosco 4 / 46

Slide 5

Slide 5 text

1872 - Antoine Lacaze-Duthiers CNRS and Sorbonne Université Staff: 350 Students : 1,000-2,000 per year La Station Biologique de Rosco 4 / 46

Slide 6

Slide 6 text

Scientists: 10 Staff: ~ 40 Research themes: Viruses Bacteria Cyanobacteria Symbioses Parasitism Ecologie of Marine Plankton team (ECOMAP) http://www.sb-roscoff.fr/en/team-diversity-and-interactions-oceanic-plankton 5 / 46

Slide 7

Slide 7 text

Eukaryotic picoplankton 6 / 46

Slide 8

Slide 8 text

Diatoms and dino agellates: 20-200 µm 7 / 46

Slide 9

Slide 9 text

Oceanic deserts 8 / 46

Slide 10

Slide 10 text

Bathycoccus Described 10 years later by W. Eikrem 1982 - Tiny eukaryotes John Sieburth - Electron microscopy Electron microscopy Johnson, P.W. & Sieburth, J.M. 1982. J. Phycol. 18:318–27. 9 / 46

Slide 11

Slide 11 text

Pico-eukaryote diversity Many new species/classes discovered in 3 last decades Not, F., Siano, R., Kooistra, W.H.C.F., Simon, N., Vaulot, D. & Probert, I. 2012. In Piganeau, G. [Ed.] Genomic Insights Gained into the Diversity, Biology and Evolution of Microbial Photosynthetic Eukaryotes. Elsevier. 10 / 46

Slide 12

Slide 12 text

1995 - Ostreococcus The smallest photosynthetic eukaryote (0.8 µm) Genome deciphered in 2006 Now a biological model Chrétiennot-Dinet, M.-J., Courties, C., Vaquer, A., Neveux, J., Claustre, H., Lautier, J. & Machado, M.C. 1995. Phycologia. 34:285–92. 11 / 46

Slide 13

Slide 13 text

1999 - Bolidomonas 1.5 µm Close to diatoms phylogenetically 12 / 46

Slide 14

Slide 14 text

1999 - Bolidomonas 1.5 µm Close to diatoms phylogenetically 2011 - Triparma Group known since 1980 First isolate in 2008 Covered with silica as diatoms Confirm filiation of Bolidomonas Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L.K., Claustre, H., Loiseaux-de Goër, S. & Vaulot, D. 1999. J. Phycol. 35:368–81. Ichinomiya, M., Yoshikawa, S., Kamiya, M., Ohki, K., Takaichi, S. & Kuwata, A. 2011. J. Phycol. 47:144–51. 12 / 46

Slide 15

Slide 15 text

Green picoplankton 13 / 46

Slide 16

Slide 16 text

Green vs. Red lineages Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O. & Taylor, F.J. 2004. Science. 305:354–60. 14 / 46

Slide 17

Slide 17 text

What is the color of the ocean ? 1. Why did the green lineage rapidly decline in ecological importance during the early Mesozoic? 2. Why have terrestrial photoautotrophs not followed similar trajectories following the end-Permian extinction? 15 / 46

Slide 18

Slide 18 text

What is the color of the ocean ? 1. Why did the green lineage rapidly decline in ecological importance during the early Mesozoic? 2. Why have terrestrial photoautotrophs not followed similar trajectories following the end-Permian extinction? But maybe the question should be: Is the ocean really red ? Falkowski, P.G., Schofield, O., Katz, M.E., van de Schootbrugge, B. & Knoll, A. 2004. In Thierstein, H. & Young, J. Eds. Coccolithophorids. Springer-Verlag, Berlin, pp. 429–53. 15 / 46

Slide 19

Slide 19 text

The green lineage Leliaert, F., Verbruggen, H. & Zechman, F.W. 2011. Bioessays. 33:683–92. 16 / 46

Slide 20

Slide 20 text

Metabarcoding Universal gene : 18S ribosomal RNA 17 / 46

Slide 21

Slide 21 text

40 stations Depths: 2 Fractions: 4 sequences Tara Oceans de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E. et al. 2015. Science. 348:1261605. > > 5.10 6 18 / 46

Slide 22

Slide 22 text

Ocean sampling day (OSD) 150 stations 1 million sequences > > 19 / 46

Slide 23

Slide 23 text

Build a reference database 18S rRNA GenBank sequences Tragin, M., Lopes dos Santos, A., Christen, R. & Vaulot, D. 2016. Perspect. Phycol. 3:141–54. 20 / 46

Slide 24

Slide 24 text

Data from OSD The green lineage represents 25% of marine phytoplankton 21 / 46

Slide 25

Slide 25 text

Data from OSD Up to 94% ... The green lineage represents 25% of marine phytoplankton 21 / 46

Slide 26

Slide 26 text

Data from OSD Up to 94% ... The green lineage represents 25% of marine phytoplankton Next question: What are the shade of green ? Tragin, M. & Vaulot, D. 2018. Sci. Rep. 8:14020. 21 / 46

Slide 27

Slide 27 text

Green algae: Oceanic vs. Coastal Lopes dos Santos, A., Gourvil, P., Tragin, M., Noël, M.-H., Decelle, J., Romac, S. & Vaulot, D. 2017. ISME J. 11:512–28. 22 / 46

Slide 28

Slide 28 text

Prasinophytes clade VII 23 / 46

Slide 29

Slide 29 text

Potter et al. 1997 - Little green balls Prasinophytes clade VII 24 / 46

Slide 30

Slide 30 text

Potter et al. 1997 - Little green balls Moon et al. 2001 - Equatorial Pacific Prasinophytes clade VII Potter, D., Lajeunesse, T.C., Saunders, G.W. & Andersen, R.A. 1997. Biodivers. Conserv. 6:99–107. Moon-van der Staay, S.Y., De Wachter, R. & Vaulot, D. 2001. Nature. 409:607–10. 24 / 46

Slide 31

Slide 31 text

Prasinophytes clade VII dominates in oceanic waters Lopes dos Santos, A., Gourvil, P., Tragin, M., Noël, M.-H., Decelle, J., Romac, S. & Vaulot, D. 2017. ISME J. 11:512–28. 25 / 46

Slide 32

Slide 32 text

Prasinophytes clade VII - Diversity Two major clades A, B 10 sub-clades: A1-A7, B1-B3 Clade C : Picocystis Lopes dos Santos, A., Gourvil, P., Tragin, M., Noël, M.-H., Decelle, J., Romac, S. & Vaulot, D. 2017. ISME J. 11:512–28. 26 / 46

Slide 33

Slide 33 text

clade B1 dominates in the Pacific. clade A6 dominates in the Mediterranean Sea Prasinophytes clade VII - Niches 27 / 46

Slide 34

Slide 34 text

clade B1 dominates in the Pacific. clade A6 dominates in the Mediterranean Sea Prasinophytes clade VII - Niches Lopes dos Santos, A., Gourvil, P., Tragin, M., Noël, M.-H., Decelle, J., Romac, S. & Vaulot, D. 2017. ISME J. 11:512–28. 27 / 46

Slide 35

Slide 35 text

Cultured strains RCC287 - Clade A3 Lopes dos Santos, A., Pollina, T., Gourvil, P., Corre, E., Marie, D., Garrido, J.L., Rodríguez, F. et al. 2017. Sci. Rep. 7:14019. 28 / 46

Slide 36

Slide 36 text

ITS (Internally Transcribed Spacer) Lopes dos Santos, A., Pollina, T., Gourvil, P., Corre, E., Marie, D., Garrido, J.L., Rodríguez, F. et al. 2017. Sci. Rep. 7:14019. 29 / 46

Slide 37

Slide 37 text

Chloropicophyceae Picocystophyceae Chloropicon: 6 species Chloroparvula: 2 species New classes, new species Lopes dos Santos, A., Pollina, T., Gourvil, P., Corre, E., Marie, D., Garrido, J.L., Rodríguez, F. et al. 2017. Sci. Rep. 7:14019. 30 / 46

Slide 38

Slide 38 text

First genome Lemieux, C., Turmel, M. & Otis, C. 2018. Nat. Commun. Submitted. 31 / 46

Slide 39

Slide 39 text

Mamiellophyceae 32 / 46

Slide 40

Slide 40 text

Mamiellophyceae Present everywhere in coastal waters, no obvious patterns. Tragin, M. & Vaulot, D. 2018. Sci. Rep. 8:14020. 33 / 46

Slide 41

Slide 41 text

Four major genera Tragin, M. & Vaulot, D. 2019. Sci. Rep. in press. 34 / 46

Slide 42

Slide 42 text

Five clades: O. tauri O. mediterraneus O. "lucimarinus" clade B clade E Ostreococcus Tragin, M. & Vaulot, D. 2019. Sci. Rep. in press. 35 / 46

Slide 43

Slide 43 text

Ostreococcus Clade E has no representative in culture. Tragin, M. & Vaulot, D. 2019. Sci. Rep. in press. 36 / 46

Slide 44

Slide 44 text

Species: Four described M. pusilla M. commoda M. bravo M. polaris Two "candidate" sp. 1 sp. 2 Micromonas Simon, N., Foulon, E., Grulois, D., Six, C., Desdevises, Y., Latimier, M., Le Gall, F. et al. 2017. Protist. 168:612–35. 37 / 46

Slide 45

Slide 45 text

Metabarcodes: Nine clades/species M. pusilla M. commoda A1-A2 M. bravo B1-B2 M. polaris clades B3_B5 Micromonas Tragin, M. & Vaulot, D. 2019. Sci. Rep. in press. 38 / 46

Slide 46

Slide 46 text

M. polaris only found in polar waters Micromonas 39 / 46

Slide 47

Slide 47 text

M. polaris only found in polar waters B5 only found in tropical waters Micromonas Tragin, M. & Vaulot, D. 2019. Sci. Rep. in press 39 / 46

Slide 48

Slide 48 text

What is next ? 40 / 46

Slide 49

Slide 49 text

Genomic adaptation to the environment Bathycoccus Bathycoccus Moreau, H., Verhelst, B., Couloux, A., Derelle, E., Rombauts, S., Grimsley, N., Van Bel, M. et al. 2012. Genome Biol. 13:R74. 41 / 46

Slide 50

Slide 50 text

Two different genomes Genomic adaptation to the environment Bathycoccus Bathycoccus 42 / 46

Slide 51

Slide 51 text

Two different genomes Dispensable genes ? Genomic adaptation to the environment Bathycoccus Bathycoccus Vannier, T., ..., Vaulot, D. et al. 2016. Sci. Rep. 6:37900. 42 / 46

Slide 52

Slide 52 text

Interactions Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E. & Keeling, P.J. 2015. Science. 347:1257594. 43 / 46

Slide 53

Slide 53 text

Interactions Gérikas Ribeiro, C., Lopes dos Santos, A., Marie, D., Pereira Brandini, F. & Vaulot, D. 2018. ISME J. 12:1360–74. 44 / 46

Slide 54

Slide 54 text

Take home messages Green algae 25% of phytoplankton Mamiellophyceae vs. Chloropicophyceae Patterns emerge at species/clade level What's next ? Link genomes and environmental adaptation Study interactions 45 / 46

Slide 55

Slide 55 text

Take home messages Green algae 25% of phytoplankton Mamiellophyceae vs. Chloropicophyceae Patterns emerge at species/clade level What's next ? Link genomes and environmental adaptation Study interactions Key resources Culture Collections Reference Gene Databases Genomes 45 / 46

Slide 56

Slide 56 text

Acknowledgments EU projects PICODIV MicroB3 MACUMBA ANR projects MALINA Green Edge Phytopol CNRS Sorbonne Université Nanyang Technological University 46 / 46