Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

No content

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

No content

Slide 16

Slide 16 text

Kafka at LinkedIn •  350+ commodity machines •  8,000+ topics •  140,000+ partitions •  278 Billion messages/day •  49 TB/day in •  176 TB/day out •  Peak Load –  4.4 Million messages per second –  6 Gigabits/sec Inbound –  21 Gigabits/sec Outbound

Slide 17

Slide 17 text

No content

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

No content

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

No content

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

No content

Slide 41

Slide 41 text

References 1.  Jay Kreps: “I ♥︎ Logs.” O'Reilly Media, September 2014. http://shop.oreilly.com/product/0636920034339.do 2.  Jay Kreps: “Why local state is a fundamental primitive in stream processing.” 31 July 2014. http://radar.oreilly.com/ 2014/07/why-local-state-is-a-fundamental-primitive-in-stream-processing.html 3.  Martin Kleppmann: “Designing data-intensive applications.” O’Reilly Media, to appear in 2015. http://dataintensive.net 4.  Martin Kleppmann: “Rethinking caching in web apps.” 1 October 2012. http://martin.kleppmann.com/2012/10/01/ rethinking-caching-in-web-apps.html 5.  Martin Kleppmann: “Moving faster with data streams: The rise of Samza at LinkedIn.” 14 July 2014. http:// engineering.linkedin.com/stream-processing/moving-faster-data-streams-rise-samza-linkedin 6.  Jakob Homan: “Real time insights into LinkedIn's performance using Apache Samza.” 18 Aug 2014. http:// engineering.linkedin.com/samza/real-time-insights-linkedins-performance-using-apache-samza 7.  Nathan Marz and James Warren: “Big Data: Principles and best practices of scalable realtime data systems.” Manning MEAP, to appear January 2015. http://manning.com/marz/ 8.  Shirshanka Das, Chavdar Botev, Kapil Surlaker, et al.: “All Aboard the Databus!,” at ACM Symposium on Cloud Computing (SoCC), October 2012. http://www.socc2012.org/s18-das.pdf 9.  Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, et al.: “Tango: Distributed Data Structures over a Shared Log,” at 24th ACM Symposium on Operating Systems Principles (SOSP), pages 325–340, November 2013. http:// research.microsoft.com/pubs/199947/Tango.pdf 10.  Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica: “Scalable Atomic Visibility with RAMP Transactions,” at ACM International Conference on Management of Data (SIGMOD), June 2014. http:// www.bailis.org/papers/ramp-sigmod2014.pdf 11.  Roshan Sumbaly, Jay Kreps, and Sam Shah: “The ‘Big Data’ Ecosystem at LinkedIn,” at ACM International Conference on Management of Data (SIGMOD), July 2013. http://www.slideshare.net/s_shah/the-big-data-ecosystem-at- linkedin-23512853 12.  Apache Samza documentation. http://samza.incubator.apache.org

Slide 42

Slide 42 text

No content