Slide 1

Slide 1 text

Mapping Data: Beyond the Choropleth Oliver O’Brien Senior Research Associate UCL Dept of Geography Twitter: @oobr Research blog: http://oobrien.com/ ADRC-E Training Course: Introduction to Data Visualisation 16-17 May 2016, Farr Institute, UCL

Slide 2

Slide 2 text

Contents •  Technology Summary for Web Mapping •  Choropleth Maps: The Good and the Bad •  Moving Beyond the Choropleth •  Example: CDRC Maps •  Example: named – KDE “heatmap” •  Case example: Country of Birth Map –  Concerns of the data scientist & digital cartographer 2

Slide 3

Slide 3 text

1. Technology Summary for Web Mapping 3

Slide 4

Slide 4 text

Managed Wrappers •  MapBox Studio •  CartoDB •  ESRI ArcGIS Online •  Tableau •  Google Fusion Tables •  Google Maps Embed API •  Google Static Maps API 4 Example: MapBox Studio style editor

Slide 5

Slide 5 text

JavaScript APIs •  OpenLayers •  Leaflet •  D3 •  Google Maps JS API 5 http://earth.nullschool.net/ http://osm.org/

Slide 6

Slide 6 text

Programming/Scripting –  Typically to produce raster imagery which then can be combined with vector data in a Javascript API (or other) map –  R –  Java –  Mapnik 6 http://twitter.mappinglondon.co.uk/

Slide 7

Slide 7 text

WMS/WFS •  “Non-slippy” webmap servers –  MapServer (C++) –  GeoServer (Java) 7 http://worldnames.publicprofiler.org/

Slide 8

Slide 8 text

2. Choropleth Maps: The Good and the Bad x  Treat unpopulated and populated areas similarly x  Can be hard to see the “story” – the interesting results x  Prone to M.A.U.P. 8 ü  Easy to make ü  Computationally quick to make ü  Retain a geographic familiarity if done carefully ü  Good for comparing areas quickly http://maps.cdrc.ac.uk/

Slide 9

Slide 9 text

A Basic Choropleth Map Map of household income in the US by census tract. Source: Campus Activism blog.

Slide 10

Slide 10 text

10 London Mayoral Election 2016 – Result. Source: BBC News. http://www.bbc.co.uk/news/uk-politics-36303157 A Basic Choropleth Map

Slide 11

Slide 11 text

Adding Geographical Contextual Features US Census: ACS Survey results

Slide 12

Slide 12 text

Adding Geographical Contextual Features Map of Housing Affordability, 2014. Source: The Guardian.

Slide 13

Slide 13 text

Adding Geographical Contextual Features Map of Philadelphia housing prices per square foot using 2014 property assessment data. Source: Campus Activism blog.

Slide 14

Slide 14 text

Adding Geographical Contextual Features Change in Socio-Economic Status, 2011-2011. Source: Neal Hudson at Savills

Slide 15

Slide 15 text

3. Moving Beyond the Choropleth •  Adapting Choropleths –  Limiting Display to Populated Places •  Dot Maps •  Cartograms •  Grid Maps 15

Slide 16

Slide 16 text

Source: http://jamesjgleeson.wordpress.com/

Slide 17

Slide 17 text

Adapted Choropleth •  Limiting Data Display to Populated Places •  Adding Contextual Information Source: Neal Hudson at Savills

Slide 18

Slide 18 text

Dot Density •  Fairer for population fluctuations –  Although layering of dots is crucial •  Hard to read data in high-density areas •  Assumption of random distribution across areas –  Unless areas are restricted to buildings Ethnicity across the New York City metropolitan area. 1 dot = 20 people. Source: Eric Fischer.

Slide 19

Slide 19 text

19 Map of ethnicity supergroups based on ONS Census (2001) data. 1 dot = 50 people. Source: @geographyjim Dot Density

Slide 20

Slide 20 text

EthniCity from London: The Information Capital (James Cheshire, Oliver Uberti) http://theinformationcapital.com/ Dot Density

Slide 21

Slide 21 text

Single Dot in Area Centroid 21 Wards - London’s Political Colour http://vis.oobrien.com/london/ Map: OSM CC-By & OS OGL

Slide 22

Slide 22 text

22 http://vis.oobrien.com/tube/#metric=wardwords Data: ONS & OS, OGL.

Slide 23

Slide 23 text

Cartograms •  Fairer display of data •  Harder to relate geography unless carefully done Maps from Worldmapper: http://www.worldpopulationatlas.org - © SASI Research Group, University of Sheffield

Slide 24

Slide 24 text

Cartograms Created by Ben Hennig – http://viewsoftheworld.net/

Slide 25

Slide 25 text

Square Cartograms •  Aftertheflood Squares (Boroughs) 25 Map/Concept: Aftertheflood.co (L). GLA version (R).

Slide 26

Slide 26 text

Half Way Between Choropleth & Cartogram •  Rentonomy (Postcode Prefixes) 26 Source: Rentonomy. http://www.rentonomy.com/london-rental-map

Slide 27

Slide 27 text

27 Gridded Choropleth Map data: ONS OGL. Source: Duncan Smith, UCL CASA. http://luminocity3d.org/

Slide 28

Slide 28 text

28 Gridded Choropleth Map data: ONS OGL. Source: Duncan Smith, UCL CASA. http://luminocity3d.org/

Slide 29

Slide 29 text

29 Gridded Choropleth Map data: ONS OGL. Source: Duncan Smith, UCL CASA. http://luminocity3d.org/

Slide 30

Slide 30 text

4. Example: CDRC Maps •  CDRC needs maps of population/consumer data which are quick to interpret and effective •  The technology is simple –  We want to maintain the simplicity of creating choropleth mapping •  The key innovations are to: –  Put some contextual information above the choropleth –  Constrain the choropleth display to areas of population 30 http://maps.cdrc.ac.uk/

Slide 31

Slide 31 text

31 Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 32

Slide 32 text

32 Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 33

Slide 33 text

33 Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 34

Slide 34 text

Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 35

Slide 35 text

Map Layers •  Also Postcode Pin Layer (Vector) •  KML Drag-and-Drop Display Layer (Vector)

Slide 36

Slide 36 text

Tabular Data > Choropleth > Real-World Map

Slide 37

Slide 37 text

UI Evolution: “New Booth” > DataShine > CDRC Maps 37 Map data: OS & ONS OGL. Sources: http://vis.oobrien.com/booth/ + http://datashine.org.uk/ + http://maps.cdrc.ac.uk/

Slide 38

Slide 38 text

Geodemographics & Indices on CDRC Maps •  OAC, LOAC, TOAC •  COWZ-EW, IUC •  IMD 2010 & 2015, 2010-15 Change, Components Diff •  SIMD 2012 •  Retail – Rental Value, Value Change by Sector Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 39

Slide 39 text

Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 40

Slide 40 text

Software (for CDRC Maps) •  Simple (static image “tiles”) – no “map server” •  Apache web server •  Mapnik (pre-renders the images) –  & python-mapnik (to slice them up) •  OpenLayers (3) •  JQuery and JQueryUI (for the non-map UI) •  PostgreSQL database –  PostGIS spatial extensions

Slide 41

Slide 41 text

5. Examples: named 41 Source: Adapted from named. http://named.publicprofiler.org/

Slide 42

Slide 42 text

Source: named. http://named.publicprofiler.org/

Slide 43

Slide 43 text

Replacing the “Worldnames” Choropleths Source: http://worldnames.publicprofiler.org/

Slide 44

Slide 44 text

KDE Mapping: “Sinclair”

Slide 45

Slide 45 text

KDE Mapping Graphs: Wikipedia. Background Map: OpenStreetMap.

Slide 46

Slide 46 text

•  “Where your name is unusually popular” •  “Where we think you might have met” The Website Source: named. http://named.publicprofiler.org/

Slide 47

Slide 47 text

The Response… Sources: Daily Mail and Mirror websites.

Slide 48

Slide 48 text

Software (for named) •  Java service which retrieves the data, grids it, creates a corresponding KDE grid and converts it to a PNG •  Apache web server •  PHP to glue the two together •  OpenLayers (3) •  JQuery and JQueryUI •  PostgreSQL database –  No need for a spatial database as just points

Slide 49

Slide 49 text

6. Case Example: Country of Birth Map •  “Top Metric” maps are pseudo-geodemographic maps –  showing a single value for an area that represents the most significant part of the population there 49

Slide 50

Slide 50 text

6. Case Example: Country of Birth Map •  Need three kinds of skills –  Data Scientist •  to manage the data and discover the story –  Demographic Geographer •  to make it a representative map –  Digital Cartographer •  to communicate the story effectively 50

Slide 51

Slide 51 text

•  Top Metric Maps require care and curation to produce a map with: –  fair groupings – wary of aggregation bias –  a sensible threshold – maximise signal-to-noise ratio but don’t lose the story –  appropriate removal of spatially overwhelming majorities –  appropriate colours – use hues to show categorization and hierarchies (HSL) –  curated emphasis with colours - emphasise/fade certain data to tell the story of the data effectively - use brighter hues for more unusual results, and more modest ones for results that would otherwise dominate, while retaining balance Country of Birth Map

Slide 52

Slide 52 text

Country of Birth Map: Data Scientist

Slide 53

Slide 53 text

•  An all-UK map of Census 2011 data, combining the equivalent (but subtly varying) tables from the 3 National Statistics bodies – ONS, NRS & NISRA. •  English excluded from all UK, & natives from their country –  Internal national land borders included to show these rule transitions •  8% threshold –  Balance between “exaggeration” and showing an interesting story Country of Birth Map: Demographic Geographer Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 54

Slide 54 text

Country of Birth Map: Digital Cartographer Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 55

Slide 55 text

Country of Birth Map: Digital Cartographer Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 56

Slide 56 text

Country of Birth Map Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 57

Slide 57 text

Paper on CDRC Maps Mapping •  O’Brien O, Cheshire J (2015) Interactive mapping for large, open demographic data sets using familiar geographical features –  Journal of Maps (T&F) –  Published online –  Online, PDF download –  Open access (CC-By) DOI: 10.1080/17445647.2015.1060183 57

Slide 58

Slide 58 text

Links http://maps.cdrc.ac.uk/ http://maps.cdrc.ac.uk/#/metrics/countryofbirth/ http://named.publicprofiler.org/ 58 Map data: Ordnance Survey and ONS OGL. Source: http://maps.cdrc.ac.uk/

Slide 59

Slide 59 text

Thanks! •  Research blog: http://oobrien.com/ •  Twitter: @oobr 59 Source: http://vis.oobrien.com/tube/