Slide 29
Slide 29 text
29
[1] খޫ, ઙݪਖ਼, & લتٱ༤. (2013). ʰݱຊޠॻ͖ݴ༿ۉߧίʔύεʱ ʹର͢Δ࣌ؒใΞϊςʔγϣϯ. ࣗવݴޠॲཧ, 20(2),
201-221.
[2] Sun, W., Rumshisky, A., & Uzuner, O. (2013). Temporal reasoning over clinical text: the state of the art. Journal of the American
Medical Informatics Association, 20(5), 814-819.
[3] Alfattni, G., Peek, N., & Nenadic, G. (2020). Extraction of temporal relations from clinical free text: A systematic review of current
approaches. Journal of Biomedical Informatics, 108, 103488.
[4] ᖒࠀຑ (2014)ʮࣗવݴޠॲཧʹ͓͚ΔྔදݱͷऔΓѻ͍ʯ౦େֶେֶӃ म࢜จ
[5] Chen, S., Wang, G., & Karlsson, B. (2019). Exploring word representations on time expression recognition. Technical report,
Microsoft Research Asia.
[6] Almasian, S., Aumiller, D., & Gertz, M. (2021). BERT got a Date: Introducing Transformers to Temporal Tagging. arXiv preprint
arXiv:2109.14927.
[7] Narisawa, K., Watanabe, Y., Mizuno, J., Okazaki, N., & Inui, K. (2013, August). Is a 204 cm man tall or small? acquisition of
numerical common sense from the web. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) (pp. 382-391).
[8] Lin, B. Y., Lee, S., Khanna, R., & Ren, X. (2020). Birds have four legs?! numersense: Probing numerical commonsense knowledge of
pre-trained language models. Proceedings of EMNLP
Reference