Slide 1

Slide 1 text

$IBSUZPO3BJMT 3BJMTEN ඵ଎!LN

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

- ࣗ෼͕લʹਐΉͨΊͷൃද - ࣗ෼Ҏ֎ͷલʹਐΈ͍ͨਓ͕લ ʹਐΈ΍͘͢ͳΔൃද - ։ൃʹࢀՃ͢Δਓ͕૿͑Δൃද ࢿྉΛ࡞Γऴ͑ɺࠓ೔͸͜Μͳൃද͕ Ͱ͖ͨΒ͍͍ͳͱߟ͍͑ͯ·͢

Slide 5

Slide 5 text

- Charty ͬͯɺ͜͏͍͏΋ͷͳΜͩʂ - ͜ͷਓ (ͨͪ) ͸ɺͦ͏͍͏׆ಈΛͯ͠ ͍ΔΜͩͶʂ - ࢲ΋։ൃ͢Δ͜ͱʹڵຯ͸͋Δ͔Βɺ ࢀՃͯ͠ΈΑ͏ʂ 30 ෼ޙ͜͏ͳͬͨΒ͍͍ͳ

Slide 6

Slide 6 text

·ͣݟͯ΄͍͠ σϞΛ͠·͢ʂʂ

Slide 7

Slide 7 text

red-data-tools/Charty 284km/benchmark_driver- output-charty

Slide 8

Slide 8 text

ࠓ೔͸͜ͷɺ Charty ͷ͓࿩

Slide 9

Slide 9 text

What is Charty ? Charty is an open-source Ruby library for visualizing your data in a simple way. https://github.com/red-data-tools/charty

Slide 10

Slide 10 text

In Charty, you need to write very few lines of code for representing what you want to do. It lets you focus on your analysis of data, instead of plotting. i.e. We aim at convenience. What Charty is focusing on

Slide 11

Slide 11 text

1/11 => Intermediate Report 3/11 => Final Report https://www.ruby.or.jp/en/news/20181106 ΘΓͱ஌ΒΕ͍ͯͳ͍ʁΑ͏ͳͷͰ঺հ͠·͢ Ruby Association Grant 2018

Slide 12

Slide 12 text

Charty ͷ ಛ௃

Slide 13

Slide 13 text

Convenient 2 ͭͷந৅ϨΠϠΛ͍࣋ͬͯΔ ఺͕ Charty ͷಛ௃Ͱ͢ - Data Abstraction Layer - Plotting Abstraction Layer

Slide 14

Slide 14 text

Abstraction Layer - Data Abstraction Layer - Input (Data Structure) - Plotting Abstraction Layer - Output (Plotting Library)

Slide 15

Slide 15 text

Abstraction Layer ݴޠ໰Θͣɺ༷ʑͳ σʔλߏ଄ɺ Visualization Library Λ ޷͖ͳ૊Έ߹ΘͤͰ࢖͏ ͜ͱΛՄೳʹ͢Δɻ

Slide 16

Slide 16 text

Data Abstraction Layer ݱࡏରԠ͍ͯ͠Δσʔλߏ଄͸ɺ - Daru::DataFrame - Numo::NArray - NMatrix - ActiveRecord

Slide 17

Slide 17 text

Data Abstraction Layer ݱࡏରԠ͍ͯ͠Δσʔλߏ଄͸ɺ - Daru::DataFrame => pandas - Numo::NArray => numpy.ndaray - NMatrix => numpy.ndaray - ActiveRecord

Slide 18

Slide 18 text

Plotting Abstraction Layer - Matplotlib - Gruff - rubyplot

Slide 19

Slide 19 text

Plotting Library - Matplotlib - Python ੡ͷϥΠϒϥϦɻଟػೳɻҰ൪ଟ͘ͷάϥϑͷछྨΛϓϩοτՄೳɻ - Gruff - Ruby ੡ͷ plotting libraryɻRMagic (Imagimagic ʹґଘ͍ͯ͠Δ) - Mac Λ࢖͍ͬͯΔํ͸ default Ͱ Imagemagic 7 ͕ install ͞ΕΔ͚Ͳ RMagic ͕ ରԠ͍ͯ͠ͳ͍ɻ - Watson ͞Μ͕͜ͷลΓͷ։ൃΛਐΊͯ͘Ε͍ͯΔɻWatson ͞Μ͋Γ͕ͱ͏

Slide 20

Slide 20 text

Plotting Library - rubyplot - GSoC 2018 Ͱ࠾୒͞ΕͨϓϩδΣΫτͰɺܧଓͯ͠։ൃதͷ Plotting Library - Charty ͱ rubyplot ͷ࿈ܞΛ͢Δ·Ͱʹ͸ɺSciRuby ͷϑΥʔϥϜͰձ࿩Λͨ͠ ΓɺRed Data Tools ͷ։ൃͷू·Γʹ࡞ऀͷ Sameer ͕དྷͯ͘ΕͨΓͱɺͦ͏͍ ͏ڠྗ͕͋ͬͨΓͨ͠ͷ͸͓΋͠Ζ͔ͬͨͰ͢ɻ͓΋͠Ζ͔͚ͬͨͩ͡Όͳ͘ ͯɺ࣮ࡍ͜͏͍͏ྲྀΕΛগͣͭࣗ͠෼͕ͨͪ࡞͍ͬͯ͘ͱ͍͏ͷ͸େࣄͩͱࢥ ͏ΜͰ͢ΑͶɻେࣄͩͱࢥ͏͔Βɺࣗ෼ʹͰ͖ͦ͏ͳػձ͕໨ͷલʹ͋ͬͨͷ Ͱ΍ͬͯΈ·ͨ͠ɻ

Slide 21

Slide 21 text

Abstraction Layer Python ੡ͷϥΠϒϥϦ Holoviews ͷࢥ૝ʹ͍ۙɻ Charty ͷ౷Ұ͞Εͨ಺෦ Interface Λߟ͑Δࡍʹ͸ɺ Holoviews ͷίʔυΛࢀߟ ʹͨ͠

Slide 22

Slide 22 text

ࢀߟʹͨ͠ϥΠϒϥϦͳͲ - holoviews (Python) - Gadfly.jl (Julia) - ggplot2 (R) - Julia Package GR (GR Framework) - Python Package GR (GR Framework) - PyCall Λհͯ͠࢖͏ϥΠϒϥϦͷ࣮૷ (matplotlib.rb, matplotlib, pyplot ͱ͔) - ଞʹ΋͍Ζ͍Ζ……

Slide 23

Slide 23 text

ͳʹ͕Ұ൪͍ͨ΁Μ͔ͩͬͨ @mrkn ͕ॻ͍ͨ͜ͱͷҙຯΛ਎Λ΋ͬͯཧղͨ͠ https://magazine.rubyist.net/articles/0055/0055-pycall.html ͦͷதͰ΋ಛʹɺ”ಓ۩Λ࡞Ζ͏ͱ͢Δਓ͕͍ͳ͍” ͷ෦෼ɻ

Slide 24

Slide 24 text

͋·ΓҰൠతʹ͸࢖͑ͳ͍γϯϓ ϧͳπʔϧΛ࡞Ζ͏ͱ͢Δਓ͸͍ ͯ΋ྑ͍ͱࢥ͍·͢ɻ ͦͷΑ͏ͳ ਓͰ͢Β΄ͱΜͲଘࡏ͠ͳ͍ͷ͕ ݱࡏͷ Ruby ίϛϡχςΟͷঢ়گͰ ͢ɻͳͥͳͷͰ͠ΐ͏ʁ

Slide 25

Slide 25 text

ͦΕ͸ɺ࡞Γ࢝ΊΑ͏ ͱͨ͠ਓʹର͢Δେ͖ ͳোน͕ 2 ͭଘࡏ͢Δ ͔ΒͰ͢ɻ

Slide 26

Slide 26 text

োนͷ 1 ͭ໨͸ɺ਺஋഑ྻ΍άϥϑΟοΫεػ ೳͳͲɺجૅͱͳΔػೳΛఏڙ͢ΔϥΠϒϥϦ ͷఆ൪͕ଘࡏ͠ͳ͍͜ͱͰ͢ɻ ͦͷͨΊɺԿ͔ Λ࡞Γ࢝ΊΔલʹɺݱࡏͲͷΑ͏ͳϥΠϒϥϦ ͕ଘࡏͯ͠ɺͦΕͧΕ͕ͲΜͳػೳΛఏڙͯ͠ ͍ͯɺͦΕΒͷ࣮૷͸Ͳͷ͘Β͍৴༻Ͱ͖Δͷ ͔Λௐࠪ͠ͳ͚Ε͹ͳΒͳ͍ͷͰ͢ɻ ໘౗ष͘ ͯ΍ͬͯΒΕ·ͤΜͶɻ

Slide 27

Slide 27 text

োนͷ 2 ͭ໨͸ɺ࢓ࣄͰػցֶश΍౷ܭ෼ੳΛ ΍͍ͬͯΔਓͷଟ͕͘࢓ࣄͰ Python ΍ R Λ࢖ͬ ͍ͯͯɺRuby ͷͨΊʹࣗ෼Ͱ࡞ͬͨ΋ͷΛ࢓ ࣄͰ࢖͑Δػձ͕΄ͱΜͲແ͍͜ͱͰ͢ɻ ϓϥ ΠϕʔτͰػցֶश΍౷ܭ෼ੳΛ΍Δػձ͕͋ Δͱͯ͠΋ɺ࢓ࣄͰ࢖͍׳Ε͍ͯΔ؀ڥΛ࢖͏ ํ͕ྑ͍ͱߟ͑Δਓ͸ଟ͍Ͱ͠ΐ͏ɻ

Slide 28

Slide 28 text

ͦΕͰ΋౰࣌ΑΓ͸ ͍ͣͿΜָͳͷͩΖ͏͚ΕͲɺ ྫɿ PyCall ͕͋Δ͔ΒͶɻ Red Data Tools, SciRuby ͳͲͷ஥͕ؒ૿͍͑ͯΔ͔Βڠྗ΋Մೳ

Slide 29

Slide 29 text

Θ͔Βͳ͍͜ͱ͕ͨ͘͞Μ Ruby ʹݶΒͣ Visualization library ͷ৘੎͸Ͳ͏ͳͷ͔ʁ ͳʹ͕࢖ΘΕ͍ͯΔʁͦΕ͸ͳͥʁͳʹ͕࢖ΘΕͳ͍ʁ ͲΕ͕༏Ε͍ͯΔʁͲΕ͕γϯϓϧʁͲΕ͕ະདྷ͕͋Δʁ ݱ࣮ੈքͰͷɺ࣮ࡍͷϢʔεέʔε͸ʁʁʁ

Slide 30

Slide 30 text

ௐࠪʹཁ͢Δ࣌ؒ ͜Εʹඇৗʹ͕͔͔࣌ؒͬͨ͠ɺ ͜Ε͚ͩ΍͍ͬͯͯ΋ GitHub ʹ૲͕ੜ͑·ͤΜ ʢผʹ૲͸ؾʹ͍ͯ͠ͳ͍͚ΕͲʣ ίϛοτ͕ੵΊ·ͤΜ ֎͔ΒݟͨΒɺίʔυॻ͍ͯΜͷʁঢ়ଶͷݫ͍͠ظؒ

Slide 31

Slide 31 text

Red Data Tools ͷϙϦγʔ https://red-data-tools.github.io/ja/ 1. RubyίϛϡχςΟʔΛ௒͑ͯڠྗ͢Δ 2. ඇ೉͢Δ͜ͱΑΓ΋खΛಈ͔͢͜ͱ͕େࣄ 3. Ұճ͚ͩͷ׆ൃͳ׆ಈΑΓ΋খͯ͘͞΋͍͍ͷͰܧଓతʹ׆ಈ͢Δ͜ͱ͕େࣄ 4. ݱ࣌఺Ͱͷ஌ࣝෆ଍͸໰୊Ͱ͸ͳ͍ 5. ෦֎ऀ͔Βͷඇ೉͸ؾʹ͠ͳ͍ 6. ָ͘͠΍Ζ͏ʂ

Slide 32

Slide 32 text

Red Data Tools ͷϙϦγʔ https://red-data-tools.github.io/ja/ 1. RubyίϛϡχςΟʔΛ௒͑ͯڠྗ͢Δ 2. ඇ೉͢Δ͜ͱΑΓ΋खΛಈ͔͢͜ͱ͕େࣄ 3. Ұճ͚ͩͷ׆ൃͳ׆ಈΑΓ΋খͯ͘͞΋͍͍ͷͰܧଓతʹ׆ಈ͢Δ͜ͱ͕େࣄ 4. ݱ࣌఺Ͱͷ஌ࣝෆ଍͸໰୊Ͱ͸ͳ͍ 5. ෦֎ऀ͔Βͷඇ೉͸ؾʹ͠ͳ͍ 6. ָ͘͠΍Ζ͏ʂ ·͋ɺίʔυ͕ޙ͔Βग़ͯ͘Δ͔ ΒͦΕͰ͍͍͔…ɻͱ͸ࢥ͍ͬͯ ͚ͨͲɺ ͦͷ࣌ظ͸ 2, 5 ͋ͨΓΛؾΛ͚ͭ ͯ͸͍·ͨ͠Ͷɻ ࣗ෼ͷϞνϕʔγϣϯΛԼ͛ͳ͍ ͜ͱΛԿΑΓ͍ͩ͡ʹͨ͠ɻ

Slide 33

Slide 33 text

݁ہ๻͸ԿΛࢥͬͯ׆ಈ͍ͯ͠Δͷ͔ͳ https://red-data-tools.github.io/ja/ 1. RubyίϛϡχςΟʔΛ௒͑ͯڠྗ͢Δ 2. ඇ೉͢Δ͜ͱΑΓ΋खΛಈ͔͢͜ͱ͕େࣄ 3. Ұճ͚ͩͷ׆ൃͳ׆ಈΑΓ΋খͯ͘͞΋͍͍ͷͰܧଓతʹ׆ಈ͢Δ͜ͱ͕େࣄ 4. ݱ࣌఺Ͱͷ஌ࣝෆ଍͸໰୊Ͱ͸ͳ͍ 5. ෦֎ऀ͔Βͷඇ೉͸ؾʹ͠ͳ͍ 6. ָ͘͠΍Ζ͏ʂ ·͋ɺίʔυ͕ޙ͔Βग़ͯ͘Δ͔ ΒͦΕ͍͍͔…ɻͱ͸ࢥ͍ͬͯͨ ͚Ͳɺ ͦͷ࣌ظ͸ 2, 5 ͋ͨΓΛؾΛ͚ͭ ͯ͸͍·ͨ͠Ͷɻ ࣗ෼ͷϞνϕʔγϣϯΛԼ͛ͳ͍ ͜ͱΛԿΑΓ͍ͩ͡ʹͨ͠ɻ ๻͸લʹਐΈ͍ͨͷͰ͋ͬͯɺͦͷͨΊʹ͸ͻͱͭͣͭੵΈ͋͛Δ ͔͠ͳ͍ͱࢥ͏ɻ Ͳ͏ͨ͠ΒੵΈ্͛ΒΕΔ͔ͬͯݴ͏ͱɺ࣮ߦͯ͠ɺվળͯ͠ɺ࣮ ߦͯ͠ɺͷ܁Γฦ͠ɻ ͦͷઌָ͕͠ΈͩͬͨΓɺ৴͡ΒΕΔͳΒͦΕΛࢭΊͨ͘͸ͳ͍ ͨͩͦ͏͍͏͜ͱ͚ͩΛେ੾ʹͯ͠ɺ޾͍ͳ͜ͱʹɺࠓ͸ಉ͡Α͏ ͳ͜ͱΛߟ࣮͑ߦ͢Δਓୡͱڠྗͯ͠ઌʹਐΊΔ͜ͱ͕ग़དྷ͍ͯΔ

Slide 34

Slide 34 text

ݱࡏͷঢ়ଶΛݴޠԽ ͯ͠ΈͨΒͦ͏ͳΓ ·ͨ͠ɻ

Slide 35

Slide 35 text

ਐΊํʹ޻෉͕ඞཁͩͬͨ͜ͱ - Plotting Library ͔Β࣮૷Λ͸͡Ίͨ - ͜Ε͸ɺCharty ͷҰ൪ຊ࣭తͳಈ࡞͸ɺάϥϑΛඳը͢Δ͜ͱ͔ͩΒ - ݁Ռ(੒Ռ) ͱͯ͠Ұ൪Θ͔Γқ͍ͱ͜Ζ͔ΒͲʔΜͱ࡞ͬͯখ͘͞ػೳ௥Ճ(վળ) ͍ͯ͘͠ɻͱ͍͏ͷ͸ࣗ෼ͷ Ϟνϕʔγϣϯҡ࣋ͷͨΊʹ΋େࣄ - Ұ೔ͷ࡞ۀ࣌ؒ͸ݶΒΕ͍ͯͯɺࡉ੾Εͷ࣌ؒͰ࡞ۀ͢Δ͜ͱ΋͋Δɻ - ࡞ۀ࠶։ͷෛՙΛԼ͛ɺͳΔ΂͘୹࣌ؒͰऴΘΔ୯ҐͷλεΫʹ෼ղͯ͠࡞ۀͷϦζϜΛ࡞Γ΍͘͢͢Δɻࣗ෼ ΛϊηΔɻϞνϕʔγϣϯΛͳΔ΂͘Լ͛ͳ͍ɺͰ͖Ε͹্͛Δɻࣗ෼Λὃͯ͠Ϟνϕʔγϣϯ͕΋্͕͠ΔͳΒ͖ͬ ͱ੒Ռ΋ग़ΔͩΖ͏͔Βὃͪ͠Ό͙͑Β͍ͷؾ࣋ͪɻͦΕ͙Β͍Ϟνϕʔγϣϯͱ͍͏΋ͷ͸େࣄͩͱײ͍ͯ͡Δɻ - ॱ൪తʹɺॲཧϑϩʔͷऴΘΓ (άϥϑඳը) ͔Β٧Ί͍ͯͬͨํ͕ޙ໭Γ͕গͳ͍ͩΖ͏͔Βɻ(data abstraction layer, plotting abstraction layer ͲͪΒ΋ɺख୳ΓͰਐΊΔͱ͍͏ελʔτΛ੾͍ͬͯΔͷͰ) - σʔλߏ଄͕มΘ͔ͬͨΒϓϩοτํ๏ʹ΋Өڹͪ͠Ό͍·ͨ͠ɻͱ͍͏ͷ͸͋ΓಘΔ͡Όͳ͍Ͱ͔͢ɻ

Slide 36

Slide 36 text

ͲͷΑ͏ʹਐΊ͔ͨ - Matplotlib ΛϦϑΝϨϯε࣮૷ͱͯ͠࠷ॳʹ࣮૷ͨ͠ - ͜Ε͸࣮͸ɺҰ൪࠷ॳ͸ rubyplot ͔Β࣮૷Λ͸͡Ίͯޙ໭ΓΛͯ͠ɺMatplotlib ͔ Β࠶࣮૷͍ͯ͠Δɻ - rubyplot ͕ Plotting Library ͱͯ͠αϙʔτ͍ͯ͠Δ backend Ͱ͋Δ GR Framework ͕ ັྗతͰ࢖͍͍ͨɻͱ͍͏ͷ͕ɺCharty Λ࣮૷͠͸͡Ίͨ࣌ʹɺ࠷ॳʹඳ͍ͨΑͦ͞ ͏ͳ Charty ͷࡏΓํͩͬͨɻ͔ͩΒ rubyplot ͷίʔυ΋શ෦ಡΜͰɺrubyplot ͷ։ൃʹ ΋ඞཁͳΒՃΘΔؾͰ͍ͨɻ࣮ࡍɺPR ΋ग़͠͸͡Ί͍ͯͨɻ - Charty ͸ Charty ͱͯ͠ɺബ͍ϥούʔͱͯ͋͠Δ΂͖ͱߟ͑௚͠ɺ͜ͷลΓ͔Β holoviews ͷΑ͏ͳࡏΓํΛҙࣝ࢝͠Ίͨɻ

Slide 37

Slide 37 text

๻͕࿩͢ҙຯ͕͋Γͦ͏ͳ͜ͱ Data Visualization ʹ͍ͭͯɺϩΫʹ஌Βͳ͍ঢ়ଶ͔Βελʔτͯ͠ɺ࣮૷·ͰͨͲΓண͍ͨͱ͍͏ ͜ͱ (Red Data Tools ͷϙϦγʔͷ 4. Ͱ͢Ͷɻଟ͘ͷਓʹॿ͚ͯ΋Β͍΋ͨ͠) ࠷ۙ਎ͷճΓͰΑ͘ฉ͘ͷ͚ͩΕͲɺ੒Ռ͕ग़ͤΔࣗ਎͕ແ͍͔Βߦ͖͍͚ͨͲࢀՃ͠ͳ͍બ୒Λ ͢Δͱ͔ɺ΍ΕΔΑ͏ʹͳΓ͍͚ͨΕͲɺ࢝ΊΒΕΔ΋ͷ͕·ͩແ͍͔ΒࢀՃͰ͖ͳ͍Ͱ͍Δɻͱ ͔ɻ ͜ΕΒ͸΋͍ͬͨͳ͍ɻࣦഊ͕͋ͬͯ΋Α͍͠ɺيಓʹ৐Δ·Ͱʹ͕͔͔࣌ؒͬͯ΋·͋ྑ͍ͷͰ ͸ɻࣗ෼ʹ߹Θͳ͔ͬͨΓɺͭ·Βͳ͍ͱײ͡ΔͳΒ΍Ίͯ͠·͑͹Α͍͠ɺͦΕΒΛ࢝Ίͳ͍ཧ ༝ʹͯ͠͠·͏ͷ͸΋͍ͬͨͳ͍ɻ΍ͬͯΈͨ࣌ʹ͚ͩɺͦͷઌ͕ݟ͑ΔՄೳੑ͕͋Δͷ͔ͩΒɻ ϋʔυϧΛΊ͍ͬͺ͍Լ͛ͯɺͬ͞ͱ࣮ߦͯ͠ɺͦͷ࣌΋͏Ұ౓ɺͪΐͬͱਖ਼֬ʹͳͬͨঢ়ଶͷ൑ அΛ͢Ε͹͍͍Μ͡Όͳ͍͔ͳɻ

Slide 38

Slide 38 text

๻͕࿩͢ҙຯ͕͋Γͦ͏ͳ͜ͱ ࣗ෼͸ɺࣗ෼ͷίʔυͰͳ͍(ଞਓͷ;ΜͲ͠Ͱ) ൃද͢Δ͜ͱΛ(ͦΕ͔͠ग़དྷͳ͍͜ͱ Λ)Ͳ͏ʹ͔͍ͨ͠ͱͣͬͱࢥ͍ͬͯͨɻ ͦ͏Ͱͳ͍ͱɺൃද͢ΔՁ஋͕ͳ͍ͷͰ͸ͳ͍͔ͱɺؾʹ͍ͯͨ࣌͠ظ͕͋ͬͨɻ (ଞͷਓ͕ൃද͢Δ࣌͸ɺͦ͏͍͏ͷ͸શવؾʹ͍ͯ͠ͳ͔͚ͬͨΕͲ) ͦ͏Ͱ͸ͳ͍ɻͱ͍͏͜ͱʹ΍ͬͱࣗ਎Λ࣋ͭ͜ͱ͕ग़དྷ͖ͯͨɻͨͱ͑͹ɺ Ruby Grant 2017 ͷ k0kubun ͞Μͷ࠷ऴใࠂॻͰɺ๻ͷ ԭೄRubyձٞ02 Ͱͷࢿྉ͕ࢀর͞ Ε͍ͯΔɻ( https://www.ruby.or.jp/assets/images/ja/news/20180501.data/kokubun.pdf ) ΋͠ Charty ͩͬͨΓɺࣗ෼ͷॻ͍ͨػೳΛࢼͯ͘͠ΕͯɺͦΕʹ͍ͭͯॻ͖࢒ͯ͘͠Εͨ ΓɺͲ͔͜Ͱൃදͯ͘͠ΕͨΓ͍ͯͨ͠Β͏Ε͍͠ɻ ͔ͩΒ͋Ε͸ྑ͔ͬͨΜͩɻͱࢥ͑ΔΑ͏ʹͳͬͨɻ

Slide 39

Slide 39 text

Future Plans - Data Abstraction Layer - Support NMatrix(࣮૷ͨ͠) - Support Red::Arrow - Support benchmark_driver (ϕϯνϚʔΫ݁ՌͷՄࢹԽ)(ॳظ࣮૷͸Ͱ͖ͨͷͰɺվળ͢Δ) - Plotting Abstraction Layer - ग़ྗՄೳͳάϥϑͷ௥Ճ - Support rubydown (https://github.com/sciruby-jp/rubydown) ࠓޙɺ΋ͬͱָʹ࢖͑Δঢ়ଶʹ͍ͨ͠ɻ(·ͩͪΐͬͱ͕Μ͹Βͳ͍ͱ࢖͑ͳ͍ͱ͍͏ೝࣝͳͷͰ)

Slide 40

Slide 40 text

·͕ͩ࣌ؒ͋Ε͹ ίʔυͷཁॴΛ ղઆ͠·͢ʂ

Slide 41

Slide 41 text

Thanks a lot for having me Railsdm ʹฏ໺͞Μ͕ؔΘΔͷ͕࠷ޙͱฉ͍͍ͯ·͢ɻ ๻͸ Railsdm ʹ͸৭ʑͳؔΘΓํΛ͖ͯ͠·͕ͨ͠ɺ Railsdm Λ ௨ͯ͡੒௕ͨ͠ϥϯΩϯάͰ͚ͬ͜͏্Ґʹ͘Δͱࢥ͏ͷͰ͢Ͷɻ 2017, 2018, 2019 ೥ͱ͍͏ظؒΛΑΓָ͘͠ա͢͜͝ͱ͕Ͱ͖·͠ ͨɻ ͦΕ͸ฏ໺͞Μ͕ Railsdm Λଓ͚ͯ͘Ε͔ͨΒͰ͢ɻ ͋Γ͕ͱ͏͍͟͝·͢ɻ